Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George Giotopoulos is active.

Publication


Featured researches published by George Giotopoulos.


Nature | 2011

Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia

Mark A. Dawson; Rab K. Prinjha; Antje Dittmann; George Giotopoulos; Marcus Bantscheff; Wai-In Chan; Samuel Robson; Chun-wa Chung; Carsten Hopf; Mikhail M. Savitski; Carola Huthmacher; Emma Gudgin; Dave Lugo; Soren Beinke; Trevor D. Chapman; Emma J. Roberts; Peter E. Soden; Kurt R. Auger; Olivier Mirguet; Konstanze Doehner; Ruud Delwel; Alan Kenneth Burnett; Phillip Jeffrey; Gerard Drewes; Kevin Lee; Brian J. P. Huntly; Tony Kouzarides

Recurrent chromosomal translocations involving the mixed lineage leukaemia (MLL) gene initiate aggressive forms of leukaemia, which are often refractory to conventional therapies. Many MLL-fusion partners are members of the super elongation complex (SEC), a critical regulator of transcriptional elongation, suggesting that aberrant control of this process has an important role in leukaemia induction. Here we use a global proteomic strategy to demonstrate that MLL fusions, as part of SEC and the polymerase-associated factor complex (PAFc), are associated with the BET family of acetyl-lysine recognizing, chromatin ‘adaptor’ proteins. These data provided the basis for therapeutic intervention in MLL-fusion leukaemia, via the displacement of the BET family of proteins from chromatin. We show that a novel small molecule inhibitor of the BET family, GSK1210151A (I-BET151), has profound efficacy against human and murine MLL-fusion leukaemic cell lines, through the induction of early cell cycle arrest and apoptosis. I-BET151 treatment in two human leukaemia cell lines with different MLL fusions alters the expression of a common set of genes whose function may account for these phenotypic changes. The mode of action of I-BET151 is, at least in part, due to the inhibition of transcription at key genes (BCL2, C-MYC and CDK6) through the displacement of BRD3/4, PAFc and SEC components from chromatin. In vivo studies indicate that I-BET151 has significant therapeutic value, providing survival benefit in two distinct mouse models of murine MLL–AF9 and human MLL–AF4 leukaemia. Finally, the efficacy of I-BET151 against human leukaemia stem cells is demonstrated, providing further evidence of its potent therapeutic potential. These findings establish the displacement of BET proteins from chromatin as a promising epigenetic therapy for these aggressive leukaemias.


Nature | 2015

BET inhibitor resistance emerges from leukaemia stem cells

Chun Yew Fong; Omer Gilan; Enid Y. N. Lam; Alan F. Rubin; Sarah Ftouni; Dean Tyler; Kym Stanley; Devbarna Sinha; Paul Yeh; Jessica Morison; George Giotopoulos; Dave Lugo; Philip D. Jeffrey; Stanley Chun-Wei Lee; Christopher Carpenter; Richard I. Gregory; Robert G. Ramsay; Steven W. Lane; Omar Abdel-Wahab; Tony Kouzarides; Ricky W. Johnstone; Sarah-Jane Dawson; Brian J. P. Huntly; Rab K. Prinjha; Anthony T. Papenfuss; Mark A. Dawson

Bromodomain and extra terminal protein (BET) inhibitors are first-in-class targeted therapies that deliver a new therapeutic opportunity by directly targeting bromodomain proteins that bind acetylated chromatin marks. Early clinical trials have shown promise, especially in acute myeloid leukaemia, and therefore the evaluation of resistance mechanisms is crucial to optimize the clinical efficacy of these drugs. Here we use primary mouse haematopoietic stem and progenitor cells immortalized with the fusion protein MLL–AF9 to generate several single-cell clones that demonstrate resistance, in vitro and in vivo, to the prototypical BET inhibitor, I-BET. Resistance to I-BET confers cross-resistance to chemically distinct BET inhibitors such as JQ1, as well as resistance to genetic knockdown of BET proteins. Resistance is not mediated through increased drug efflux or metabolism, but is shown to emerge from leukaemia stem cells both ex vivo and in vivo. Chromatin-bound BRD4 is globally reduced in resistant cells, whereas the expression of key target genes such as Myc remains unaltered, highlighting the existence of alternative mechanisms to regulate transcription. We demonstrate that resistance to BET inhibitors, in human and mouse leukaemia cells, is in part a consequence of increased Wnt/β-catenin signalling, and negative regulation of this pathway results in restoration of sensitivity to I-BET in vitro and in vivo. Together, these findings provide new insights into the biology of acute myeloid leukaemia, highlight potential therapeutic limitations of BET inhibitors, and identify strategies that may enhance the clinical utility of these unique targeted therapies.


Leukemia | 2014

Recurrent mutations, including NPM1c, activate a BRD4-dependent core transcriptional program in acute myeloid leukemia

Mark A. Dawson; Emma Gudgin; Sarah J. Horton; George Giotopoulos; Eshwar Meduri; Samuel Robson; Ester Cannizzaro; Hikari Osaki; M Wiese; S Putwain; C Y Fong; C Grove; Jenny I.O. Craig; Antje Dittmann; Dave Lugo; Phillip Jeffrey; Gerard Drewes; Kevin Lee; Lars Bullinger; Rab K. Prinjha; Tony Kouzarides; George S. Vassiliou; Brian J. P. Huntly

Recent evidence suggests that inhibition of bromodomain and extra-terminal (BET) epigenetic readers may have clinical utility against acute myeloid leukemia (AML). Here we validate this hypothesis, demonstrating the efficacy of the BET inhibitor I-BET151 across a variety of AML subtypes driven by disparate mutations. We demonstrate that a common ‘core’ transcriptional program, which is HOX gene independent, is downregulated in AML and underlies sensitivity to I-BET treatment. This program is enriched for genes that contain ‘super-enhancers’, recently described regulatory elements postulated to control key oncogenic driver genes. Moreover, our program can independently classify AML patients into distinct cytogenetic and molecular subgroups, suggesting that it contains biomarkers of sensitivity and response. We focus AML with mutations of the Nucleophosmin gene (NPM1) and show evidence to suggest that wild-type NPM1 has an inhibitory influence on BRD4 that is relieved upon NPM1c mutation and cytosplasmic dislocation. This leads to the upregulation of the core transcriptional program facilitating leukemia development. This program is abrogated by I-BET therapy and by nuclear restoration of NPM1. Finally, we demonstrate the efficacy of I-BET151 in a unique murine model and in primary patient samples of NPM1c AML. Taken together, our data support the use of BET inhibitors in clinical trials in AML.


Blood | 2011

Modeling the evolution of ETV6-RUNX1 –induced B-cell precursor acute lymphoblastic leukemia in mice

Louise van der Weyden; George Giotopoulos; Alistair G. Rust; Louise S. Matheson; Frederik W. van Delft; Jun Kong; Anne E. Corcoran; Mel Greaves; Charles G. Mullighan; Brian J. P. Huntly; David J. Adams

The t(12;21) translocation that generates the ETV6-RUNX1 (TEL-AML1) fusion gene, is the most common chromosomal rearrangement in childhood cancer and is exclusively associated with B-cell precursor acute lymphoblastic leukemia (BCP-ALL). The translocation arises in utero and is necessary but insufficient for the development of leukemia. Single-nucleotide polymorphism array analysis of ETV6-RUNX1 patient samples has identified multiple additional genetic alterations; however, the role of these lesions in leukemogenesis remains undetermined. Moreover, murine models of ETV6-RUNX1 ALL that faithfully recapitulate the human disease are lacking. To identify novel genes that cooperate with ETV6-RUNX1 in leukemogenesis, we generated a mouse model that uses the endogenous Etv6 locus to coexpress the Etv6-RUNX1 fusion and Sleeping Beauty transposase. An insertional mutagenesis screen was performed by intercrossing these mice with those carrying a Sleeping Beauty transposon array. In contrast to previous models, a substantial proportion (20%) of the offspring developed BCP-ALL. Isolation of the transposon insertion sites identified genes known to be associated with BCP-ALL, including Ebf1 and Epor, in addition to other novel candidates. This is the first mouse model of ETV6-RUNX1 to develop BCP-ALL and provides important insight into the cooperating genetic alterations in ETV6-RUNX1 leukemia.


Oncogene | 2016

The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia

George Giotopoulos; W-I Chan; Sarah J. Horton; David Ruau; Paolo Gallipoli; A Fowler; Charles Crawley; E Papaemmanuil; Peter J. Campbell; Berthold Göttgens; Jm Van Deursen; Philip A. Cole; Brian J. P. Huntly

Growing evidence links abnormal epigenetic control to the development of hematological malignancies. Accordingly, inhibition of epigenetic regulators is emerging as a promising therapeutic strategy. The acetylation status of lysine residues in histone tails is one of a number of epigenetic post-translational modifications that alter DNA-templated processes, such as transcription, to facilitate malignant transformation. Although histone deacetylases are already being clinically targeted, the role of histone lysine acetyltransferases (KAT) in malignancy is less well characterized. We chose to study this question in the context of acute myeloid leukemia (AML), where, using in vitro and in vivo genetic ablation and knockdown experiments in murine models, we demonstrate a role for the epigenetic regulators CBP and p300 in the induction and maintenance of AML. Furthermore, using selective small molecule inhibitors of their lysine acetyltransferase activity, we validate CBP/p300 as therapeutic targets in vitro across a wide range of human AML subtypes. We proceed to show that growth retardation occurs through the induction of transcriptional changes that induce apoptosis and cell-cycle arrest in leukemia cells and finally demonstrate the efficacy of the KAT inhibitors in decreasing clonogenic growth of primary AML patient samples. Taken together, these data suggest that CBP/p300 are promising therapeutic targets across multiple subtypes in AML.


Therapeutic advances in hematology | 2015

Epigenetic regulators as promising therapeutic targets in acute myeloid leukemia

Paolo Gallipoli; George Giotopoulos; Brian J. P. Huntly

Acute myeloid leukemia (AML), the most prevalent acute leukemia in adults, is an aggressive hematological malignancy arising in hematopoietic stem and progenitor cells. With the exception of a few specific AML subtypes, the mainstays of treatment have not significantly changed over the last 20 years, and are still based on standard cytotoxic chemotherapy. As a result, clinical outcome remains poor for the majority of patients, with overall long-term survival in the region of 20–30%. Recent successes in characterizing the genetic landscape of AML have highlighted that, despite its heterogeneity, many cases of AML carry recurrent mutations in genes encoding epigenetic regulators. Transcriptional dysregulation and altered epigenetic function have therefore emerged as exciting areas in AML research and it is becoming increasingly clear that epigenetic dysfunction is central to leukemogenesis in AML. This has subsequently paved the way for the development of epigenetically targeted therapies. In this review, we will discuss the most recent advances in our understanding of the role of epigenetic dysregulation in AML pathobiology. We will particularly focus on those altered epigenetic programs that have been shown to be central to the development and maintenance of AML in preclinical models. We will discuss the recent development of therapeutics specifically targeting these key epigenetic programs in AML, describe their mechanism of action and present their current clinical development. Finally, we will discuss the opportunities presented by epigenetically targeted therapy in AML and will highlight future challenges ahead for the AML community, to ensure that these novel therapeutics are optimally translated into clinical practice and result in clinical improvement for AML patients.


Journal of Experimental Medicine | 2015

A novel mouse model identifies cooperating mutations and therapeutic targets critical for chronic myeloid leukemia progression

George Giotopoulos; Louise van der Weyden; Hikari Osaki; Alistair G. Rust; Paolo Gallipoli; Eshwar Meduri; Sarah J. Horton; Wai-In Chan; Donna Foster; Rab K. Prinjha; John E. Pimanda; Daniel G. Tenen; George S. Vassiliou; Steffen Koschmieder; David J. Adams; Brian J. P. Huntly

Giotopoulos et al. report a novel mouse model that closely mimics the natural progression of human chronic myeloid leukemia to blast crisis, and use this model to identify novel candidate genes and pathways that, in combination with BCR-ABL, drive disease progression.


Blood | 2018

Glutaminolysis is a metabolic dependency in FLT3ITDacute myeloid leukemia unmasked by FLT3 tyrosine kinase inhibition

Paolo Gallipoli; George Giotopoulos; Konstantinos Tzelepis; Ana S.H. Costa; Shabana Vohra; Paula Medina-Perez; Faisal Basheer; Ludovica Marando; Lorena Di Lisio; Joao Dias; Haiyang Yun; Daniel Sasca; Sarah J. Horton; George S. Vassiliou; Christian Frezza; Brian J. P. Huntly

FLT3 internal tandem duplication (FLT3ITD) mutations are common in acute myeloid leukemia (AML) associated with poor patient prognosis. Although new-generation FLT3 tyrosine kinase inhibitors (TKI) have shown promising results, the outcome of FLT3ITD AML patients remains poor and demands the identification of novel, specific, and validated therapeutic targets for this highly aggressive AML subtype. Utilizing an unbiased genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 screen, we identify GLS, the first enzyme in glutamine metabolism, as synthetically lethal with FLT3-TKI treatment. Using complementary metabolomic and gene-expression analysis, we demonstrate that glutamine metabolism, through its ability to support both mitochondrial function and cellular redox metabolism, becomes a metabolic dependency of FLT3ITD AML, specifically unmasked by FLT3-TKI treatment. We extend these findings to AML subtypes driven by other tyrosine kinase (TK) activating mutations and validate the role of GLS as a clinically actionable therapeutic target in both primary AML and in vivo models. Our work highlights the role of metabolic adaptations as a resistance mechanism to several TKI and suggests glutaminolysis as a therapeutically targetable vulnerability when combined with specific TKI in FLT3ITD and other TK activating mutation-driven leukemias.


Nature Cell Biology | 2017

Early loss of Crebbp confers malignant stem cell properties on lymphoid progenitors.

Sarah J. Horton; George Giotopoulos; Haiyang Yun; Shabana Vohra; Olivia Sheppard; Rachael Bashford-Rogers; Mamunur Rashid; Alexandra Clipson; Wai-In Chan; Daniel Sasca; Loukia Yiangou; Hikari Osaki; Faisal Basheer; Paolo Gallipoli; Natalie Burrows; Ayşegül Erdem; Anastasiya Sybirna; Sarah Foerster; Wanfeng Zhao; Tonci Sustic; Anna Petrunkina Harrison; Elisa Laurenti; Jessica Okosun; Daniel James Hodson; Penny Wright; Kenneth G. C. Smith; Patrick H. Maxwell; Jude Fitzgibbon; Ming-Qing Du; David J. Adams

Loss-of-function mutations of cyclic-AMP response element binding protein, binding protein (CREBBP) are prevalent in lymphoid malignancies. However, the tumour suppressor functions of CREBBP remain unclear. We demonstrate that loss of Crebbp in murine haematopoietic stem and progenitor cells (HSPCs) leads to increased development of B-cell lymphomas. This is preceded by accumulation of hyperproliferative lymphoid progenitors with a defective DNA damage response (DDR) due to a failure to acetylate p53. We identify a premalignant lymphoma stem cell population with decreased H3K27ac, which undergoes transcriptional and genetic evolution due to the altered DDR, resulting in lymphomagenesis. Importantly, when Crebbp is lost later in lymphopoiesis, cellular abnormalities are lost and tumour generation is attenuated. We also document that CREBBP mutations may occur in HSPCs from patients with CREBBP-mutated lymphoma. These data suggest that earlier loss of Crebbp is advantageous for lymphoid transformation and inform the cellular origins and subsequent evolution of lymphoid malignancies.


Cell Reports | 2016

Mll-AF4 Confers Enhanced Self-Renewal and Lymphoid Potential during a Restricted Window in Development

Neil A Barrett; Camille Malouf; Chrysoula Kapeni; Wendi Bacon; George Giotopoulos; Sten Eirik W. Jacobsen; Brian J. P. Huntly; Katrin Ottersbach

Summary MLL-AF4+ infant B cell acute lymphoblastic leukemia is characterized by an early onset and dismal survival. It initiates before birth, and very little is known about the early stages of the disease’s development. Using a conditional Mll-AF4-expressing mouse model in which fusion expression is targeted to the earliest definitive hematopoietic cells generated in the mouse embryo, we demonstrate that Mll-AF4 imparts enhanced B lymphoid potential and increases repopulation and self-renewal capacity during a putative pre-leukemic state. This occurs between embryonic days 12 and 14 and manifests itself most strongly in the lymphoid-primed multipotent progenitor population, thus pointing to a window of opportunity and a potential cell of origin. However, this state alone is insufficient to generate disease, with the mice succumbing to B cell lymphomas only after a long latency. Future analysis of the molecular details of this pre-leukemic state will shed light on additional events required for progression to acute leukemia.

Collaboration


Dive into the George Giotopoulos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wai-In Chan

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

David J. Adams

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Hikari Osaki

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Dawson

Peter MacCallum Cancer Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge