Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George R. Littlejohn is active.

Publication


Featured researches published by George R. Littlejohn.


Nature plants | 2015

Chloroplasts play a central role in plant defence and are targeted by pathogen effectors.

Marta de Torres Zabala; George R. Littlejohn; Siddharth Jayaraman; David J. Studholme; Trevor C. Bailey; Tracy Lawson; Michael Tillich; Dirk Licht; Bettina Bölter; Laura Delfino; William Truman; John W. Mansfield; Nicholas Smirnoff; Murray Grant

Microbe associated molecular pattern (MAMP) receptors in plants recognize MAMPs and activate basal defences; however a complete understanding of the molecular and physiological mechanisms conferring immunity remains elusive. Pathogens suppress active defence in plants through the combined action of effector proteins. Here we show that the chloroplast is a key component of early immune responses. MAMP perception triggers the rapid, large-scale suppression of nuclear encoded chloroplast-targeted genes (NECGs). Virulent Pseudomonas syringae effectors reprogramme NECG expression in Arabidopsis, target the chloroplast and inhibit photosynthetic CO2 assimilation through disruption of photosystem II. This activity prevents a chloroplastic reactive oxygen burst. These physiological changes precede bacterial multiplication and coincide with pathogen-induced abscisic acid (ABA) accumulation. MAMP pretreatment protects chloroplasts from effector manipulation, whereas application of ABA or the inhibitor of photosynthetic electron transport, DCMU, abolishes the MAMP-induced chloroplastic reactive oxygen burst, and enhances growth of a P. syringae hrpA mutant that fails to secrete effectors.


The Plant Cell | 2015

Transcriptional Dynamics Driving MAMP-Triggered Immunity and Pathogen Effector-Mediated Immunosuppression in Arabidopsis Leaves Following Infection with Pseudomonas syringae pv tomato DC3000

Laura A. Lewis; Krzysztof Polanski; Marta de Torres-Zabala; Siddharth Jayaraman; Laura Bowden; Jonathan D. Moore; Christopher A. Penfold; Dafyd J. Jenkins; Claire Hill; Laura Baxter; Satish Kulasekaran; William Truman; George R. Littlejohn; Justyna Prusinska; A. Mead; Jens Steinbrenner; Richard Hickman; David A. Rand; David L. Wild; Sascha Ott; Vicky Buchanan-Wollaston; Nicholas Smirnoff; Jim Beynon; Katherine J. Denby; Murray Grant

High-resolution microarray analysis of Pseudomonas syringae-inoculated Arabidopsis leaves reveals transcriptional dynamics underpinning basal defense and effector modulation leading to disease development. Transcriptional reprogramming is integral to effective plant defense. Pathogen effectors act transcriptionally and posttranscriptionally to suppress defense responses. A major challenge to understanding disease and defense responses is discriminating between transcriptional reprogramming associated with microbial-associated molecular pattern (MAMP)-triggered immunity (MTI) and that orchestrated by effectors. A high-resolution time course of genome-wide expression changes following challenge with Pseudomonas syringae pv tomato DC3000 and the nonpathogenic mutant strain DC3000hrpA- allowed us to establish causal links between the activities of pathogen effectors and suppression of MTI and infer with high confidence a range of processes specifically targeted by effectors. Analysis of this information-rich data set with a range of computational tools provided insights into the earliest transcriptional events triggered by effector delivery, regulatory mechanisms recruited, and biological processes targeted. We show that the majority of genes contributing to disease or defense are induced within 6 h postinfection, significantly before pathogen multiplication. Suppression of chloroplast-associated genes is a rapid MAMP-triggered defense response, and suppression of genes involved in chromatin assembly and induction of ubiquitin-related genes coincide with pathogen-induced abscisic acid accumulation. Specific combinations of promoter motifs are engaged in fine-tuning the MTI response and active transcriptional suppression at specific promoter configurations by P. syringae.


New Phytologist | 2010

Perfluorodecalin enhances in vivo confocal microscopy resolution of Arabidopsis thaliana mesophyll

George R. Littlejohn; João D. Gouveia; Christoph Edner; Nicholas Smirnoff; John Love

*Air spaces in the leaf mesophyll generate deleterious optical effects that compromise confocal microscopy. *Leaves were mounted in the nontoxic, nonfluorescent perfluorocarbon, perfluorodecalin (PFD), and optical enhancement and physiological effect were assessed using confocal microscopy and chlorophyll fluorescence. *Mounting leaves of Arabidopsis thaliana in PFD significantly improved the optical qualities of the leaf, thereby enabling high-resolution laser scanning confocal imaging over twofold deeper into the mesophyll, compared with using water. Incubation in PFD had less physiological impact on the mounted specimen than water. *We conclude that the application of PFD as a mounting medium substantially increases confocal image resolution of living mesophyll and vascular bundle cells, with minimal physiological impact.


Frontiers in Plant Science | 2014

An update: improvements in imaging perfluorocarbon-mounted plant leaves with implications for studies of plant pathology, physiology, development and cell biology

George R. Littlejohn; Jessica C. Mansfield; Jacqueline Christmas; Eleanor Witterick; Mark D. Fricker; Murray Grant; Nicholas Smirnoff; Richard M. Everson; Julian Moger; John Love

Plant leaves are optically complex, which makes them difficult to image by light microscopy. Careful sample preparation is therefore required to enable researchers to maximize the information gained from advances in fluorescent protein labeling, cell dyes and innovations in microscope technologies and techniques. We have previously shown that mounting leaves in the non-toxic, non-fluorescent perfluorocarbon (PFC), perfluorodecalin (PFD) enhances the optical properties of the leaf with minimal impact on physiology. Here, we assess the use of the PFCs, PFD, and perfluoroperhydrophenanthrene (PP11) for in vivo plant leaf imaging using four advanced modes of microscopy: laser scanning confocal microscopy (LSCM), two-photon fluorescence microscopy, second harmonic generation microscopy, and stimulated Raman scattering (SRS) microscopy. For every mode of imaging tested, we observed an improved signal when leaves were mounted in PFD or in PP11, compared to mounting the samples in water. Using an image analysis technique based on autocorrelation to quantitatively assess LSCM image deterioration with depth, we show that PP11 outperformed PFD as a mounting medium by enabling the acquisition of clearer images deeper into the tissue. In addition, we show that SRS microscopy can be used to image PFCs directly in the mesophyll and thereby easily delimit the “negative space” within a leaf, which may have important implications for studies of leaf development. Direct comparison of on and off resonance SRS micrographs show that PFCs do not to form intracellular aggregates in live plants. We conclude that the application of PFCs as mounting media substantially increases advanced microscopy image quality of living mesophyll and leaf vascular bundle cells.


Analytical Chemistry | 2013

Label-free chemically specific imaging in planta with stimulated Raman scattering microscopy.

Jessica C. Mansfield; George R. Littlejohn; Mark Seymour; Rob J. Lind; Sarah Perfect; Julian Moger

The growing world population puts ever-increasing demands on the agricultural and agrochemical industries to increase agricultural yields. This can only be achieved by investing in fundamental plant and agrochemical research and in the development of improved analytical tools to support research in these areas. There is currently a lack of analytical tools that provide noninvasive structural and chemical analysis of plant tissues at the cellular scale. Imaging techniques such as coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy provide label-free chemically specific image contrast based on vibrational spectroscopy. Over the past decade, these techniques have been shown to offer clear advantages for a vast range of biomedical research applications. The intrinsic vibrational contrast provides label-free quantitative functional analysis, it does not suffer from photobleaching, and it allows near real-time imaging in 3D with submicrometer spatial resolution. However, due to the susceptibility of current detection schemes to optical absorption and fluorescence from pigments (such as chlorophyll), the plant science and agrochemical research communities have not been able to benefit from these techniques and their application in plant research has remained virtually unexplored. In this paper, we explore the effect of chlorophyll fluorescence and absorption in CARS and SRS microscopy. We show that with the latter it is possible to use phase-sensitive detection to separate the vibrational signal from the (electronic) absorption processes. Finally, we demonstrate the potential of SRS for a range of in planta applications by presenting in situ chemical analysis of plant cell wall components, epicuticular waxes, and the deposition of agrochemical formulations onto the leaf surface.


The Plant Cell | 2015

Septin-Dependent Assembly of the Exocyst Is Essential for Plant Infection by Magnaporthe oryzae.

Yogesh K. Gupta; Yasin F. Dagdas; Ana-Lilia Martinez-Rocha; Michael J. Kershaw; George R. Littlejohn; Lauren S. Ryder; Jan Sklenar; Frank L.H. Menke; Nicholas J. Talbot

The rice blast fungus targets polarized exocytosis to the exact point of plant infection using septin GTPases, which direct the exocyst complex to the appressorium pore. Magnaporthe oryzae is the causal agent of rice blast disease, the most devastating disease of cultivated rice (Oryza sativa) and a continuing threat to global food security. To cause disease, the fungus elaborates a specialized infection cell called an appressorium, which breaches the cuticle of the rice leaf, allowing the fungus entry to plant tissue. Here, we show that the exocyst complex localizes to the tips of growing hyphae during vegetative growth, ahead of the Spitzenkörper, and is required for polarized exocytosis. However, during infection-related development, the exocyst specifically assembles in the appressorium at the point of plant infection. The exocyst components Sec3, Sec5, Sec6, Sec8, and Sec15, and exocyst complex proteins Exo70 and Exo84 localize specifically in a ring formation at the appressorium pore. Targeted gene deletion, or conditional mutation, of genes encoding exocyst components leads to impaired plant infection. We demonstrate that organization of the exocyst complex at the appressorium pore is a septin-dependent process, which also requires regulated synthesis of reactive oxygen species by the NoxR-dependent Nox2 NADPH oxidase complex. We conclude that septin-mediated assembly of the exocyst is necessary for appressorium repolarization and host cell invasion.


Plant Physiology | 2015

In Vivo Chemical and Structural Analysis of Plant Cuticular Waxes Using Stimulated Raman Scattering Microscopy

George R. Littlejohn; Jessica C. Mansfield; David A. Parker; Robert J. Lind; Sarah Perfect; Mark Seymour; Nicholas Smirnoff; John Love; Julian Moger

Stimulated Raman microscopy is an in vivo imaging technique that enables simultaneous chemical and structural analysis of plant cuticle. The cuticle is a ubiquitous, predominantly waxy layer on the aerial parts of higher plants that fulfils a number of essential physiological roles, including regulating evapotranspiration, light reflection, and heat tolerance, control of development, and providing an essential barrier between the organism and environmental agents such as chemicals or some pathogens. The structure and composition of the cuticle are closely associated but are typically investigated separately using a combination of structural imaging and biochemical analysis of extracted waxes. Recently, techniques that combine stain-free imaging and biochemical analysis, including Fourier transform infrared spectroscopy microscopy and coherent anti-Stokes Raman spectroscopy microscopy, have been used to investigate the cuticle, but the detection sensitivity is severely limited by the background signals from plant pigments. We present a new method for label-free, in vivo structural and biochemical analysis of plant cuticles based on stimulated Raman scattering (SRS) microscopy. As a proof of principle, we used SRS microscopy to analyze the cuticles from a variety of plants at different times in development. We demonstrate that the SRS virtually eliminates the background interference compared with coherent anti-Stokes Raman spectroscopy imaging and results in label-free, chemically specific confocal images of cuticle architecture with simultaneous characterization of cuticle composition. This innovative use of the SRS spectroscopy may find applications in agrochemical research and development or in studies of wax deposition during leaf development and, as such, represents an important step in the study of higher plant cuticles.


Journal of Visualized Experiments | 2012

A Simple Method for Imaging Arabidopsis Leaves Using Perfluorodecalin as an Infiltrative Imaging Medium

George R. Littlejohn; John Love

The problem of acquiring high-resolution images deep into biological samples is widely acknowledged1. In air-filled tissue such as the spongy mesophyll of plant leaves or vertebrate lungs further difficulties arise from multiple transitions in refractive index between cellular components, between cells and airspaces and between the biological tissue and the rest of the optical system. Moreover, refractive index mismatches lead to attenuation of fluorophore excitation and signal emission in fluorescence microscopy. We describe here the application of the perfluorocarbon, perfluorodecalin (PFD), as an infiltrative imaging medium which optically improves laser scanning confocal microscopy (LSCM) sample imaging at depth, without resorting to damaging increases in laser power and has minimal physiological impact2. We describe the protocol for use of PFD with Arabidopsis thaliana leaf tissue, which is optically complex as a result of its structure (Figure 1). PFD has a number of attributes that make it suitable for this use3. The refractive index of PFD (1.313) is comparable with that of water (1.333) and is closer to that of cytosol (approx. 1.4) than air (1.000). In addition, PFD is readily available, non-fluorescent and is non-toxic. The low surface tension of PFD (19 dynes cm-1) is lower than that of water (72 dynes cm-1) and also below the limit (25 - 30 dyne cm-1) for stomatal penetration4, which allows it to flood the spongy mesophyll airspaces without the application of a potentially destructive vacuum or surfactant. Finally and crucially, PFD has a great capacity for dissolving CO2 and O2, which allows gas exchange to be maintained in the flooded tissue, thus minimizing the physiological impact on the sample. These properties have been used in various applications which include partial liquid breathing and lung inflation5,6, surgery7, artificial blood8, oxygenation of growth media9, and studies of ice crystal formation in plants10. Currently, it is common to mount tissue in water or aqueous buffer for live confocal imaging. We consider that the use of PFD as a mounting medium represents an improvement on existing practice and allows the simple preparation of live whole leaf samples for imaging.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Two independent S-phase checkpoints regulate appressorium-mediated plant infection by the rice blast fungus Magnaporthe oryzae

Míriam Osés-Ruiz; Wasin Sakulkoo; George R. Littlejohn; Magdalena Martin-Urdiroz; Nicholas J. Talbot

Significance Rice blast is a devastating fungal disease of cultivated rice, and its control is vital to ensure global food security. In an effort to understand how the rice blast fungus causes disease, we have investigated how the cell cycle controls the early stages of plant infection. The rice blast fungus develops a special cell, called an appressorium, to infect rice leaves. This structure generates enormous pressure, which the fungus applies as physical force to puncture the leaf surface. We have shown that a buildup of pressure in the appressorium is necessary to trigger an unusual cell-cycle checkpoint that is necessary for the appressorium to function properly. If this process is blocked, rice blast disease cannot occur. To cause rice blast disease, the fungal pathogen Magnaporthe oryzae develops a specialized infection structure called an appressorium. This dome-shaped, melanin-pigmented cell generates enormous turgor and applies physical force to rupture the rice leaf cuticle using a rigid penetration peg. Appressorium-mediated infection requires septin-dependent reorientation of the F-actin cytoskeleton at the base of the infection cell, which organizes polarity determinants necessary for plant cell invasion. Here, we show that plant infection by M. oryzae requires two independent S-phase cell-cycle checkpoints. Initial formation of appressoria on the rice leaf surface requires an S-phase checkpoint that acts through the DNA damage response (DDR) pathway, involving the Cds1 kinase. By contrast, appressorium repolarization involves a novel, DDR-independent S-phase checkpoint, triggered by appressorium turgor generation and melanization. This second checkpoint specifically regulates septin-dependent, NADPH oxidase-regulated F-actin dynamics to organize the appressorium pore and facilitate entry of the fungus into host tissue.


Methods in Enzymology | 2013

The use of HyPer to examine spatial and temporal changes in H2O2 in high light-exposed plants.

Marino Exposito-Rodriguez; Pierre Philippe Laissue; George R. Littlejohn; Nicholas Smirnoff; Philip M. Mullineaux

Exposure of photosynthetic cells of leaf tissues of Arabidopsis thaliana (Arabidopsis) to high light intensities (HL) may provoke a rapid rise in hydrogen peroxide (H2O2) levels in chloroplasts and subcellular compartments, such as peroxisomes, associated with photosynthetic metabolism. It has been hypothesized that when H2O2 is contained at or near its site of production then it plays an important role in signaling to induce acclimation to HL. However, should this discrete containment fail and H2O2 levels exceed the capacity of antioxidant systems to scavenge them, then oxidative stress ensues which triggers cell death. To test this hypothesis, the spatiotemporal accumulation of H2O2 needs to be quantified in different subcellular compartments. In this chapter, preliminary experiments are presented on the use of Arabidopsis seedlings transformed with a nuclear-encoded cytosol-located yellow fluorescent protein-based sensor for H2O2, called HyPer. HyPer allows ratiometric determination of its fluorescence at two excitation wavelengths, which frees quantification of H2O2 from the variable levels of HyPer in vivo. HyPer fluorescence was shown to have the potential to provide the necessary spatial, temporal, and quantitative resolution to study HL responses of seedlings using confocal microscopy. Chlorophyll fluorescence imaging was used to quantify photoinhibition of photosynthesis induced by HL treatment of seedlings on the microscope staging. However, several technical issues remain, the most challenging of which is the silencing of HyPer expression beyond the seedling stage. This limited our pilot studies to cotyledon epidermal cells, which while not photosynthetic, nevertheless responded to HL with 45% increase in cytosolic H2O2.

Collaboration


Dive into the George R. Littlejohn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge