Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George Rhodes is active.

Publication


Featured researches published by George Rhodes.


Kidney International | 2013

In vivo multiphoton imaging of mitochondrial structure and function during acute kidney injury

Andrew M. Hall; George Rhodes; Ruben M. Sandoval; Peter R. Corridon; Bruce A. Molitoris

Mitochondrial dysfunction has been implicated in the pathogenesis of acute kidney injury due to ischemia and toxic drugs. Methods for imaging mitochondrial function in cells using confocal microscopy are well established; more recently, it was shown that these techniques can be utilized in ex vivo kidney tissue using multiphoton microscopy. We extended this approach in vivo and found that kidney mitochondrial structure and function can be imaged in anesthetized rodents using multiphoton excitation of endogenous and exogenous fluorophores. Mitochondrial nicotinamide adenine dinucleotide increased markedly in rat kidneys in response to ischemia. Following intravenous injection, the mitochondrial membrane potential-dependent dye TMRM was taken up by proximal tubules; in response to ischemia, the membrane potential dissipated rapidly and mitochondria became shortened and fragmented in proximal tubules. In contrast, the mitochondrial membrane potential and structure were better maintained in distal tubules. Changes in mitochondrial structure, nicotinamide adenine dinucleotide, and membrane potential were found in the proximal, but not distal, tubules after gentamicin exposure. These changes were sporadic, highly variable among animals, and were preceded by changes in non-mitochondrial structures. Thus, real-time changes in mitochondrial structure and function can be imaged in rodent kidneys in vivo using multiphoton excitation of endogenous and exogenous fluorophores in response to ischemia-reperfusion injury or drug toxicity.


Journal of The American Society of Nephrology | 2012

Multiple Factors Influence Glomerular Albumin Permeability in Rats

Ruben M. Sandoval; Mark C. Wagner; Monica Patel; Silvia B. Campos-Bilderback; George Rhodes; Exing Wang; Sarah E. Wean; Sherry S. Clendenon; Bruce A. Molitoris

Different laboratories recently reported incongruous results describing the quantification of albumin filtration using two-photon microscopy. We investigated the factors that influence the glomerular sieving coefficient for albumin (GSC(A)) in an effort to explain these discordant reports and to develop standard operating procedures for determining GSC(A). Multiple factors influenced GSC(A), including the kidney depth of image acquisition (10-20 μm was appropriate), the selection of fluorophore (probes emitting longer wavelengths were superior), the selection of plasma regions for fluorescence measurements, the size and molecular dispersion characteristics of dextran polymers if used, dietary status, and the genetic strain of rat. Fasting reduced the GSC(A) in Simonsen Munich Wistar rats from 0.035±0.005 to 0.016±0.004 (P<0.01). Frömter Munich Wistar rats had a much lower GSC(A) in both the fed and the fasted states. Finally, we documented extensive albumin transcytosis with vesicular and tubular delivery to and fusion with the basolateral membrane in S1 proximal tubule cells. In summary, these results help explain the previously conflicting microscopy and micropuncture data describing albumin filtration and highlight the dynamic nature of glomerular albumin permeability.


American Journal of Physiology-renal Physiology | 2013

A method to facilitate and monitor expression of exogenous genes in the rat kidney using plasmid and viral vectors

Peter R. Corridon; George Rhodes; Ellen C. Leonard; David P. Basile; Vincent H. Gattone; Robert L. Bacallao; Simon J. Atkinson

Gene therapy has been proposed as a novel alternative to treat kidney disease. This goal has been hindered by the inability to reliably deliver transgenes to target cells throughout the kidney, while minimizing injury. Since hydrodynamic forces have previously shown promising results, we optimized this approach and designed a method that utilizes retrograde renal vein injections to facilitate transgene expression in rat kidneys. We show, using intravital fluorescence two-photon microscopy, that fluorescent albumin and dextrans injected into the renal vein under defined conditions of hydrodynamic pressure distribute broadly throughout the kidney in live animals. We found injection parameters that result in no kidney injury as determined by intravital microscopy, histology, and serum creatinine measurements. Plasmids, baculovirus, and adenovirus vectors, designed to express EGFP, EGFP-actin, EGFP-occludin, EGFP-tubulin, tdTomato-H2B, or RFP-actin fusion proteins, were introduced into live kidneys in a similar fashion. Gene expression was then observed in live and ex vivo kidneys using two-photon imaging and confocal laser scanning microscopy. We recorded widespread fluorescent protein expression lasting more than 1 mo after introduction of transgenes. Plasmid and adenovirus vectors provided gene transfer efficiencies ranging from 50 to 90%, compared with 10-50% using baculovirus. Using plasmids and adenovirus, fluorescent protein expression was observed 1) in proximal and distal tubule epithelial cells; 2) within glomeruli; and 3) within the peritubular interstitium. In isolated kidneys, fluorescent protein expression was observed from the cortex to the papilla. These results provide a robust approach for gene delivery and the study of protein function in live mammal kidneys.


Life Sciences | 2012

Chronic endothelin-1 infusion elevates glomerular sieving coefficient and proximal tubular albumin reuptake in the rat

Mohamed A. Saleh; Ruben M. Sandoval; George Rhodes; Silvia B. Campos-Bilderback; Bruce A. Molitoris; David M. Pollock

AIM We have previously found that chronic endothelin-1 (ET-1) infusion in Sprague-Dawley rats increases glomerular permeability to albumin (P(alb)) as assessed in vitro independent of blood pressure with no observed albuminuria. In this study, we hypothesized that ET-1 increases glomerular albumin filtration with accompanied increase in albumin uptake via the proximal tubule, which masks the expected increase in urinary albumin excretion. MAIN METHODS Nonfasting Munich-Wistar Fromter rats were surgically prepared for in vivo imaging (n=6). Rats were placed on the microscope stage with the exposed kidney placed in a cover slip-bottomed dish bathed in warm isotonic saline. Rats were then injected i.v. with rat serum albumin conjugated to Texas Red that was observed to enter capillary loops of superficial glomeruli, move into Bowmans space, bind to the proximal tubular cell brush border and reabsorbed across the apical membrane. Glomerular sieving coefficient (GSC) was calculated as the ratio of conjugated albumin within the glomerular capillary versus that in Bowmans space. Rats were again studied after 2 weeks of chronic ET-1 (2 pmol/kg/min; i.v. osmotic minipump). KEY FINDINGS Glomerular sieving coefficient was significantly increased in rats following chronic ET-1 infusion (0.025 ± 0.005 vs. 0.017 ± 0.003, p<0.05). Mean fluorescence intensity for conjugated albumin within proximal tubules was increased by ET-1 infusion: 118.40 ± 6.34 vs. 74.27 ± 4.45 pixel intensity (p<0.01). SIGNIFICANCE These data provide in vivo evidence that ET-1 directly increases glomerular permeability to albumin and that albuminuria is prevented by increased PT albumin uptake in the rat.


American Journal of Physiology-renal Physiology | 2016

Mechanism of increased clearance of glycated albumin by proximal tubule cells.

Mark C. Wagner; Jered Myslinski; Shiv Pratap; Brittany Flores; George Rhodes; Silvia B. Campos-Bilderback; Ruben M. Sandoval; Sudhanshu Kumar; Monika Patel; Ashish; Bruce A. Molitoris

Serum albumin is the most abundant plasma protein and has a long half-life due to neonatal Fc receptor (FcRn)-mediated transcytosis by many cell types, including proximal tubule cells of the kidney. Albumin also interacts with, and is modified by, many small and large molecules. Therefore, the focus of the present study was to address the impact of specific known biological albumin modifications on albumin-FcRn binding and cellular handling. Binding at pH 6.0 and 7.4 was performed since FcRn binds albumin strongly at acidic pH and releases it after transcytosis at physiological pH. Equilibrium dissociation constants were measured using microscale thermophoresis. Since studies have shown that glycated albumin is excreted in the urine at a higher rate than unmodified albumin, we studied glucose and methylgloxal modified albumins (21 days). All had reduced affinity to FcRn at pH 6.0, suggesting these albumins would not be returned to the circulation via the transcytotic pathway. To address why modified albumin has reduced affinity, we analyzed the structure of the modified albumins using small-angle X-ray scattering. This analysis showed significant structural changes occurring to albumin with glycation, particularly in the FcRn-binding region, which could explain the reduced affinity to FcRn. These results offer an explanation for enhanced proximal tubule-mediated sorting and clearance of abnormal albumins.


Journal of The American Society of Nephrology | 2017

Hydrodynamic Isotonic Fluid Delivery Ameliorates Moderate-to-Severe Ischemia-Reperfusion Injury in Rat Kidneys

Jason A. Collett; Peter R. Corridon; Purvi Mehrotra; Alexander L. Kolb; George Rhodes; Caroline Miller; Bruce A. Molitoris; Janice Pennington; Ruben M. Sandoval; Simon J. Atkinson; Silvia B. Campos-Bilderback; David P. Basile; Robert L. Bacallao

Highly aerobic organs like the kidney are innately susceptible to ischemia-reperfusion (I/R) injury, which can originate from sources including myocardial infarction, renal trauma, and transplant. Therapy is mainly supportive and depends on the cause(s) of damage. In the absence of hypervolemia, intravenous fluid delivery is frequently the first course of treatment but does not reverse established AKI. Evidence suggests that disrupting leukocyte adhesion may prevent the impairment of renal microvascular perfusion and the heightened inflammatory response that exacerbate ischemic renal injury. We investigated the therapeutic potential of hydrodynamic isotonic fluid delivery (HIFD) to the left renal vein 24 hours after inducing moderate-to-severe unilateral IRI in rats. HIFD significantly increased hydrostatic pressure within the renal vein. When conducted after established AKI, 24 hours after I/R injury, HIFD produced substantial and statistically significant decreases in serum creatinine levels compared with levels in animals given an equivalent volume of saline via peripheral infusion (P<0.05). Intravital confocal microscopy performed immediately after HIFD showed improved microvascular perfusion. Notably, HIFD also resulted in immediate enhancement of parenchymal labeling with the fluorescent dye Hoechst 33342. HIFD also associated with a significant reduction in the accumulation of renal leukocytes, including proinflammatory T cells. Additionally, HIFD significantly reduced peritubular capillary erythrocyte congestion and improved histologic scores of tubular injury 4 days after IRI. Taken together, these results indicate that HIFD performed after establishment of AKI rapidly restores microvascular perfusion and small molecule accessibility, with improvement in overall renal function.


American Journal of Physiology-renal Physiology | 2017

Intravital Imaging of the Kidney in a Rat Model of Salt-Sensitive Hypertension

Bradley T. Endres; Ruben M. Sandoval; George Rhodes; Silvia B. Campos-Bilderback; Malgorzata M. Kamocka; Christopher McDermott-Roe; Alexander Staruschenko; Bruce A. Molitoris; Aron M. Geurts; Oleg Palygin

Hypertension is one of the most prevalent diseases worldwide and a major risk factor for renal failure and cardiovascular disease. The role of albuminuria, a common feature of hypertension and robust predictor of cardiorenal disorders, remains incompletely understood. The goal of this study was to investigate the mechanisms leading to albuminuria in the kidney of a rat model of hypertension, the Dahl salt-sensitive (SS) rat. To determine the relative contributions of the glomerulus and proximal tubule (PT) to albuminuria, we applied intravital two-photon-based imaging to investigate the complex renal physiological changes that occur during salt-induced hypertension. Following a high-salt diet, SS rats exhibited elevated blood pressure, increased glomerular sieving of albumin (GSCalb = 0.0686), relative permeability to albumin (+Δ16%), and impaired volume hemodynamics (-Δ14%). Serum albumin but not serum globulins or creatinine concentration was decreased (-0.54 g/dl), which was concomitant with increased filtration of albumin (3.7 vs. 0.8 g/day normal diet). Pathologically, hypertensive animals had significant tubular damage, as indicated by increased prevalence of granular casts, expansion and necrosis of PT epithelial cells (+Δ2.20 score/image), progressive augmentation of red blood cell velocity (+Δ269 µm/s) and micro vessel diameter (+Δ4.3 µm), and increased vascular injury (+Δ0.61 leakage/image). Therefore, development of salt-induced hypertension can be triggered by fast and progressive pathogenic remodeling of PT epithelia, which can be associated with changes in albumin handling. Collectively, these results indicate that both the glomerulus and the PT contribute to albuminuria, and dual treatment of glomerular filtration and albumin reabsorption may represent an effective treatment of salt-sensitive hypertension.


Methods | 2017

Surgical preparation of rats and mice for intravital microscopic imaging of abdominal organs

George Rhodes

Intravital microscopy is a powerful research tool that can provide insight into cellular and subcellular events that take place in organs in the body. However, meaningful results can only be obtained from animals whose physiology is preserved during the process of microscopy. Here I discuss the importance of preserving the overall state of health of the animal, methods of anesthesia, surgical techniques for intravital microscopy of various abdominal organs, methods to maintain and monitor the physiology of the animal during microscopy and associated peri- and post-operative recovery considerations.


Journal of The American Society of Nephrology | 2018

Exogenous Gene Transmission of Isocitrate Dehydrogenase 2 Mimics Ischemic Preconditioning Protection

Alexander L. Kolb; Peter R. Corridon; Shijun Zhang; Weimin Xu; Frank A. Witzmann; Jason A. Collett; George Rhodes; Seth Winfree; Devin Bready; Zechariah J. Pfeffenberger; Jeremy M. Pomerantz; Takashi Hato; Glenn T. Nagami; Bruce A. Molitoris; David P. Basile; Simon J. Atkinson; Robert L. Bacallao

Ischemic preconditioning confers organ-wide protection against subsequent ischemic stress. A substantial body of evidence underscores the importance of mitochondria adaptation as a critical component of cell protection from ischemia. To identify changes in mitochondria protein expression in response to ischemic preconditioning, we isolated mitochondria from ischemic preconditioned kidneys and sham-treated kidneys as a basis for comparison. The proteomic screen identified highly upregulated proteins, including NADP+-dependent isocitrate dehydrogenase 2 (IDH2), and we confirmed the ability of this protein to confer cellular protection from injury in murine S3 proximal tubule cells subjected to hypoxia. To further evaluate the role of IDH2 in cell protection, we performed detailed analysis of the effects of Idh2 gene delivery on kidney susceptibility to ischemia-reperfusion injury. Gene delivery of IDH2 before injury attenuated the injury-induced rise in serum creatinine (P<0.05) observed in controls and increased the mitochondria membrane potential (P<0.05), maximal respiratory capacity (P<0.05), and intracellular ATP levels (P<0.05) above those in controls. This communication shows that gene delivery of Idh2 can confer organ-wide protection against subsequent ischemia-reperfusion injury and mimics ischemic preconditioning.


American Journal of Physiology-renal Physiology | 2007

Activated protein C ameliorates LPS-induced acute kidney injury and downregulates renal INOS and angiotensin 2

Akanksha Gupta; George Rhodes; David T. Berg; Bruce Gerlitz; Bruce A. Molitoris; Brian W. Grinnell

Collaboration


Dive into the George Rhodes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aron M. Geurts

Medical College of Wisconsin

View shared research outputs
Researchain Logo
Decentralizing Knowledge