Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George V. Ludwig is active.

Publication


Featured researches published by George V. Ludwig.


The Lancet | 1996

Re-emergence of epidemic Venezuelan equine encephalomyelitis in South America

Scott C. Weaver; Rosalba Salas; Rebeca Rico-Hesse; George V. Ludwig; M. S. Oberste; Jorge Boshell; Robert B. Tesh

BACKGROUND Venezuelan equine encephalomyelitis (VEE) virus has caused periodic epidemics among human beings and equines in Latin America from the 1920s to the early 1970s. The first major outbreak since 1973 occurred in Venezuela and Colombia during 1995, and involved an estimated 75,000 to 100,000 people. We report an epidemiological and virological investigation of this epidemic. METHODS Virus isolates were made in cell culture from human serum, human throat swabs, and brain tissue from aborted and stillborn human fetuses, as well as from horse brain tissue and pooled mosquito collections. Human sera were also tested for VEE-specific antibodies. The serotypes of VEE isolates were identified by antigen assays, and viruses were characterised genetically by sequencing PCR products generated from the E3 and E2 genes. Phylogenetic analyses were done to determine evolutionary relations with respect to previous epidemic/epizootic and enzootic VEE virus isolates. Mosquito collections were made to identify possible vectors, and clinical findings were determined by direct observation of patients visiting hospitals and clinics in affected regions, and by inspecting patient records. Equine vaccination and vector control were used in an attempt to halt the spread of the outbreak. FINDINGS Most affected people had an acute, self-limited febrile illness of 3 to 4 days duration. However, convulsions were often seen in children, and abortions and fetal deaths occurred in pregnant women infected with VEE virus. Antigenic characterisation of 12 virus isolates spanning the temporal and spatial range of the outbreak indicated that all are VEE serotype IC. Phylogenetic analysis revealed that all of the 1995 viruses were closely related to serotype IC viruses isolated during a large VEE outbreak that occurred in the same regions of Colombia and Venezuela from 1962-1964. A 1983 mosquito isolate from north central Venezuela was also closely related to the 1995 isolates. INTERPRETATION This outbreak was remarkably similar to one that occurred in same regions of Venezuela and Colombia during 1962-1964. Symptoms of infected patients, estimated mortality rates, meteorological conditions preceding the epidemic, and seasonal patterns of transmission were all very similar to those reported in the previous outbreak. In addition, viruses isolated during 1995 were antigenically and genetically nearly identifical to those obtained during 1962-1964. These findings suggest that the epidemic resulted from the re-emergence of an epizootic serotype IC VEE virus. Identification of a similar virus isolate in mosquitoes in Venezuela in 1983, 10 years after epidemic/epizootic VEE activity ceased, raises the possibility of a serotype IC enzootic transmission cycle in northern Venezuela.


Vaccine | 2000

Recombinant RNA replicons derived from attenuated Venezuelan equine encephalitis virus protect guinea pigs and mice from Ebola hemorrhagic fever virus.

Peter Pushko; Mike Bray; George V. Ludwig; Michael D. Parker; Alan L. Schmaljohn; Anthony Sanchez; Peter B. Jahrling; Jonathan F. Smith

RNA replicons derived from an attenuated strain of Venezuelan equine encephalitis virus (VEE), an alphavirus, were configured as candidate vaccines for Ebola hemorrhagic fever. The Ebola nucleoprotein (NP) or glycoprotein (GP) genes were introduced into the VEE RNA downstream from the VEE 26S promoter in place of the VEE structural protein genes. The resulting recombinant replicons, expressing the NP or GP genes, were packaged into VEE replicon particles (NP-VRP and GP-VRP, respectively) using a bipartite helper system that provided the VEE structural proteins in trans and prevented the regeneration of replication-competent VEE during packaging. The immunogenicity of NP-VRP and GP-VRP and their ability to protect against lethal Ebola infection were evaluated in BALB/c mice and in two strains of guinea pigs. The GP-VRP alone, or in combination with NP-VRP, protected both strains of guinea pigs and BALB/c mice, while immunization with NP-VRP alone protected BALB/c mice, but neither strain of guinea pig. Passive transfer of sera from VRP-immunized animals did not confer protection against lethal challenge. However, the complete protection achieved with active immunization with VRP, as well as the unique characteristics of the VEE replicon vector, warrant further testing of the safety and efficacy of NP-VRP and GP-VRP in primates as candidate vaccines against Ebola hemorrhagic fever.


Emerging Infectious Diseases | 2003

West Nile virus in Mexico: evidence of widespread circulation since July 2002.

Jose G. Estrada-Franco; Roberto Navarro-Lopez; David W. C. Beasley; Lark L. Coffey; Anne-Sophie Carrara; Amelia Travassos da Rosa; Tamara Clements; Eryu Wang; George V. Ludwig; Arturo Campomanes Cortes; Pedro Paz Ramirez; Robert B. Tesh; Alan D. T. Barrett; Scott C. Weaver

West Nile virus (WNV) antibodies were detected in horses from five Mexican states, and WNV was isolated from a Common Raven in the state of Tabasco. Phylogenetic studies indicate that this isolate, the first from Mexico, is related to strains from the central United States but has a relatively high degree of sequence divergence.


Journal of Medical Entomology | 2005

Isolation of Viruses from Mosquitoes (Diptera: Culicidae) Collected in the Amazon Basin Region of Peru

Michael J. Turell; Monica L. O’Guinn; J. W. Jones; Michael R. Sardelis; David J. Dohm; Douglas M. Watts; Roberto Fernandez; A.P.A. Travassos da Rosa; H. Guzman; Robert B. Tesh; C. A. Rossi; George V. Ludwig; J. A. Mangiafico; J. Kondig; L. P. Wasieloski; James E. Pecor; M. Zyzak; G. Schoeler; Christopher N. Mores; Carlos Calampa; John S. Lee; T. A. Klein

Abstract As part of a comprehensive study on the ecology of arthropod-borne viruses in the Amazon Basin region of Peru, we assayed 539,694 mosquitoes captured in Loreto Department, Peru, for arboviruses. Mosquitoes were captured either by dry ice-baited miniature light traps or with aspirators while mosquitoes were landing on human collectors, identified to species, and later tested on Vero cells for virus. In total, 164 virus isolations were made and included members of the Alphavirus (eastern equine encephalomyelitis, Trocara, Una, Venezuelan equine encephalomyelitis, and western equine encephalomyelitis viruses), Flavivirus (Ilheus and St. Louis encephalitis), and Orthobunyavirus (Caraparu, Itaqui, Mirim, Murutucu, and Wyeomyia viruses) genera. In addition, several viruses distinct from the above-mentioned genera were identified to the serogroup level. Eastern equine encephalomyelitis virus was associated primarily with Culex pedroi Sirivanakarn & Belkin, whereas Venezuelan equine encephalomyelitis virus was associated primarily with Culex gnomatos Sallum, Huchings & Ferreira. Most isolations of Ilheus virus were made from Psorophora ferox (Von Humboldt). Although species of the Culex subgenus Melanoconion accounted for only 45% of the mosquitoes collected, 85% of the virus isolations were made from this subgenus. Knowledge of the viruses that are being transmitted in the Amazon Basin region of Peru will enable the development of more effective diagnostic assays, more efficient and rapid diagnoses of clinical illnesses caused by these pathogens, risk analysis for military/civilian operations, and development of potential disease control measures.


Emerging Infectious Diseases | 2003

DNA Vaccine for West Nile Virus Infection in Fish Crows (Corvus ossifragus)

Michael J. Turell; Michel L. Bunning; George V. Ludwig; Brian V. Ortman; Jeff Chang; Tully Speaker; Andrew Spielman; Robert G. McLean; Nicholas Komar; Robert Gates; Tracey S. McNamara; Terry Creekmore; Linda Farley; Carl J. Mitchell

A DNA vaccine for West Nile virus (WNV) was evaluated to determine whether its use could protect fish crows (Corvus ossifragus) from fatal WNV infection. Captured adult crows were given 0.5 mg of the DNA vaccine either orally or by intramuscular (IM) inoculation; control crows were inoculated or orally exposed to a placebo. After 6 weeks, crows were challenged subcutaneously with 105 plaque-forming units of WNV (New York 1999 strain). None of the placebo inoculated–placebo challenged birds died. While none of the 9 IM vaccine–inoculated birds died, 5 of 10 placebo-inoculated and 4 of 8 orally vaccinated birds died within 15 days after challenge. Peak viremia titers in birds with fatal WNV infection were substantially higher than those in birds that survived infection. Although oral administration of a single DNA vaccine dose failed to elicit an immune response or protect crows from WNV infection, IM administration of a single dose prevented death and was associated with reduced viremia.


Emerging Infectious Diseases | 2004

Endemic Venezuelan Equine Encephalitis in Northern Peru

Patricia V. Aguilar; Ivorlyne P. Greene; Lark L. Coffey; Gladys Medina; Abelardo C. Moncayo; Michael Anishchenko; George V. Ludwig; Michael J. Turell; Monica L. O’Guinn; John S. Lee; Robert B. Tesh; Douglas M. Watts; Kevin L. Russell; Christine L. Hice; Stephen P. Yanoviak; Amy C. Morrison; Terry A. Klein; David J. Dohm; Hilda Guzman; Amelia Travassos da Rosa; Carolina Guevara; Tadeusz J. Kochel; James G. Olson; Cesar Cabezas; Scott C. Weaver

Since Venezuelan equine encephalitis virus (VEEV) was isolated in Peru in 1942, >70 isolates have been obtained from mosquitoes, humans, and sylvatic mammals primarily in the Amazon region. To investigate genetic relationships among the Peru VEEV isolates and between the Peru isolates and other VEEV strains, a fragment of the PE2 gene was amplified and analyzed by single-stranded conformation polymorphism. Representatives of seven genotypes underwent sequencing and phylogenetic analysis. The results identified four VEE complex lineages that cocirculate in the Amazon region: subtypes ID (Panama and Colombia/Venezuela genotypes), IIIC, and a new, proposed subtype IIID, which was isolated from a febrile human, mosquitoes, and spiny rats. Both ID lineages and the IIID subtype are associated with febrile human illness. Most of the subtype ID isolates belonged to the Panama genotype, but the Colombia/Venezuela genotype, which is phylogenetically related to epizootic strains, also continues to circulate in the Amazon basin.


Journal of Clinical Microbiology | 2004

Use of a Recombinant Envelope Protein Subunit Antigen for Specific Serological Diagnosis of West Nile Virus Infection

David W. C. Beasley; Amelia Travassos da Rosa; Lark L. Coffey; Anne Sophie Carrara; Kathrine Phillippi-Falkenstein; Rudolf P. Bohm; Marion S. Ratterree; Kristy M. Lillibridge; George V. Ludwig; Jose G. Estrada-Franco; Scott C. Weaver; Robert B. Tesh; Robert E. Shope; Alan D. T. Barrett

ABSTRACT Serological diagnosis of West Nile virus (WNV) infection is complicated by extensive antigenic cross-reactivity with other closely related flaviviruses, such as St. Louis encephalitis virus. Here we describe a recombinant, bacterially expressed antigen equivalent to structural domain III of the WNV envelope protein that has allowed clear discrimination of antibody responses to WNV from those against other related flaviviruses in indirect enzyme-linked immunosorbent assays using standardized control antisera and field-collected samples.


Journal of Medical Entomology | 2004

Evidence for Arbovirus Dissemination Conduits from the Mosquito (Diptera: Culicidae) Midgut

William S. Romoser; Leonard P. Wasieloski; Peter Pushko; John P. Kondig; Kriangkrai Lerdthusnee; Marco V. Neira; George V. Ludwig

Abstract The mechanism by which arboviruses bypass the basal lamina of mosquito midgut cells and enter the body cavity has been unclear. Experiments using Venezuelan equine encephalitis viral replicon particles, which express the green fluorescent protein gene in cells, indicate the operation of tissue conduits, possibly involving tracheae and visceral muscles, that facilitate virus movement through the basal lamina. Ultrastructural studies of the midgut reveal evidence for possible complete penetration of the basal lamina by tracheal cells and regions of modified basal lamina associated with visceral muscle. The modified basal lamina closely resembles proventricular matrix material known to allow virus passage.


Laboratory Investigation | 2004

Monkeypox virus detection in rodents using real-time 3′-minor groove binder TaqMan ® assays on the Roche LightCycler

David A. Kulesh; Bonnie M. Loveless; David Norwood; Jeffrey Garrison; Chris A. Whitehouse; Chris Hartmann; Eric M. Mucker; David Miller; Leonard P. Wasieloski; John W. Huggins; Gregory Huhn; Lori L Miser; Carroll Imig; Mark Martinez; Tom Larsen; Cynthia A. Rossi; George V. Ludwig

During the summer of 2003, an outbreak of human monkeypox occurred in the Midwest region of the United States. In all, 52 rodents suspected of being infected with monkeypox virus were collected from an exotic pet dealer and from private homes. The rodents were euthanized and submitted for testing to the United States Army Medical Research Institute of Infectious Diseases by the Galesburg Animal Disease Laboratory, Illinois Department of Agriculture. The rodent tissue samples were appropriately processed and then tested by using an integrated approach involving real-time polymerase chain reaction (PCR) assays, an antigen-detection immunoassay, and virus culture. We designed and extensively tested two specific real-time PCR assays for rapidly detecting monkeypox virus DNA using the Vaccinia virus F3L and N3R genes as targets. The assays were validated against panels of orthopox viral and miscellaneous bacterial DNAs. A pan-orthopox electrochemiluminescence (ECL) assay was used to further confirm the presence of Orthopoxvirus infection of the rodents. Seven of 12 (58%) animals (seven of 52 (15%) of all animals) tested positive in both monkeypox-specific PCR assays and two additional pan-orthopox PCR assays (in at least one tissue). The ECL results showed varying degrees of agreement with PCR. One hamster and three gerbils were positive by both PCR and ECL for all tissues tested. In addition, we attempted to verify the presence of monkeypox virus by culture on multiple cell lines, by immunohistology, and by electron microscopy, with negative results. Sequencing the PCR products from the samples indicated 100% identity with monkeypox virus strain Zaire-96-I-16 (a human isolate from the Congo). These real-time PCR and ECL assays represent a significant addition to the battery of tests for the detection of various orthopoxviruses. In light of the recent monkeypox virus transmissions, early detection of the virus is crucial for both natural outbreaks and potential acts of bioterrorism.


Vaccine | 1998

Induction of protective immune responses against Venezuelan equine encephalitis (VEE) virus aerosol challenge with microencapsulated VEE virus vaccine.

Terrence E. Greenway; John H. Eldridge; George V. Ludwig; Jay K. Staas; Jonathan F. Smith; Richard M. Gilley; Suzanne M. Michalek

Venezuelan equine encephalomyelitis (VEE) virus, a member of the family Togaviridae, genus Alphavirus, causes disease in humans and equids. The virus is normally transmitted by the bite of an infected mosquito however, it can also be highly infectious by aerosol. The purpose of the present study was to determine the effectiveness of formalin-fixed, 60Co-irradiated VEE virus microencapsulated in poly DL-lactide-co-glycolide in inducing immune responses protective against aerosol challenge with virulent VEE virus. Balb/c mice were primed by subcutaneous injection of microencapsulated VEE virus vaccine, followed 30 days later by a single immunization with the same vaccine given via the oral, intratracheal (i.t.) or subcutaneous (s.c.) route. Mice boosted by the i.t. or s.c. route had higher plasma IgG anti-VEE virus levels than orally immunized animals. The responses in the former groups were similar in magnitude to those seen in mice primed and boosted by the i.t. route. Antibody activity was detected in bronchial-alveolar and intestinal washes, fecal extracts and saliva from immunized animals. The levels of IgG and IgA antibody activity in bronchial-alveolar wash fluids from mice boosted by the i.t. route were higher than those seen in animals immunized by the oral or s.c. route with the microsphere vaccine. Mice immunized with the microencapsulated VEE virus vaccine were protected from lethal VEE virus infection following aerosol challenge at approximately three months after the initial immunization. Mucosal immunization via the i.t. route appeared to be the most effective regimen, since 100% of the mice resisted aerosol challenge.

Collaboration


Dive into the George V. Ludwig's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael J. Turell

United States Department of the Army

View shared research outputs
Top Co-Authors

Avatar

Scott C. Weaver

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Michael D. Parker

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Glenn Wortmann

Walter Reed Army Medical Center

View shared research outputs
Top Co-Authors

Avatar

Mary M. Klote

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Peter Pushko

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Robert B. Tesh

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Erik A. Henchal

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

James F. Cummings

Walter Reed Army Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge