Gergely Silasi
University of British Columbia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gergely Silasi.
Journal of Neurotrauma | 2009
Crystal L. MacLellan; Darren L. Clark; Gergely Silasi; Frederick Colbourne
Therapeutic (induced) hypothermia (TH) has been extensively studied as a means to reduce brain injury following global and focal cerebral ischemia, intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH). Here, we briefly review the clinical and experimental evidence supporting the use of TH in each condition. We emphasize the importance of systematically evaluating treatment parameters, especially the duration of cooling, in each condition. We contend that TH provides considerable protection after global and focal cerebral ischemia, especially when cooling is prolonged (e.g., >24 h). However, there is presently insufficient evidence to support the clinical use of TH for ICH and SAH. In any case, further animal work is needed to develop optimized protocols for treating cardiac arrest (global ischemia), and to maximize the likelihood of successful clinical translation in focal cerebral ischemia.
Neuron | 2014
Gergely Silasi; Timothy H. Murphy
Connections between neurons are affected within 3 min of stroke onset by massive ischemic depolarization and then delayed cell death. Some connections can recover with prompt reperfusion; others associated with the dying infarct do not. Disruption in functional connectivity is due to direct tissue loss and indirect disconnections of remote areas known as diaschisis. Stroke is devastating, yet given the brains redundant design, collateral surviving networks and their connections are well-positioned to compensate. Our perspective is that new treatments for stroke may involve a rational functional and structural connections-based approach. Surviving, affected, and at-risk networks can be identified and targeted with scenario-specific treatments. Strategies for recovery may include functional inhibition of the intact hemisphere, rerouting of connections, or setpoint-mediated network plasticity. These approaches may be guided by brain imaging and enabled by patient- and injury-specific brain stimulation, rehabilitation, and potential molecule-based strategies to enable new connections.
Stroke | 2010
Crystal L. MacLellan; Gergely Silasi; Angela M. Auriat; Frederick Colbourne
The collagenase and whole blood intracerebral hemorrhage (ICH) models are widely used to identify mechanisms of injury and to evaluate treatments. Despite preclinical successes, to date, no treatment tested in phase III clinical trials has benefited ICH patients. These failures call into question the predictive value of current ICH models. By highlighting differences between these common rodent models of ICH, we sought to help investigators choose the more appropriate model for their study and to encourage the use of both whenever possible. For instance, we previously reported substantial differences in the bleeding profile, progression of cell death, and functional outcome between these models. These and other differences influence the efficacy and mechanisms of action of various treatment modalities. Thus, in this review, we also summarize neuroprotective and rehabilitation findings in each model. We conclude that differences between ICH models along with our current inability to identify the more clinically predictive model necessitate that preclinical assessments should normally be done in both. Such an approach, coupled with better assessment practices, will likely improve chances of future clinical success.
Experimental Neurology | 2009
Matthew Fingas; Mark Penner; Gergely Silasi; Frederick Colbourne
Intracerebral hemorrhage (ICH) is a devastating stroke with no proven treatment to reduce brain injury. In this study we modeled ICH by injecting 100 microL of autologous blood into the striatum of rats. We then tested whether hypothermia would reduce brain injury and improve recovery as has been repeatedly observed for ischemic and traumatic brain damage. Aside from reducing blood-brain barrier disruption, inflammation and edema, hypothermia has not consistently improved behavioral or histological outcome after ICH in animal studies. As this might relate to the choice of cooling method and the duration of hypothermia, we used a system that selectively cooled the injured hemisphere to approximately 32 degrees C (striatum) while the body remained normothermic. Cooling (vs. normothermia) started 1 h after ICH and lasted for 12 h, 3 days or 6 days followed by slow re-warming (approximately 1 degrees C/h). Functional impairment was evaluated from 2 to 3 weeks post-ICH at which time brain injury was determined. The ICH caused significant impairment on a neurological deficit scale and in tests of walking (horizontal ladder), skilled reaching (tray task) and spontaneous limb usage (cylinder test). Only the limb use asymmetry deficit was significantly mitigated by hypothermia, and then only by the longest treatment. Lesion volume, which averaged 16.9 mm3, was not affected. These results, in conjunction with earlier studies, suggest that prolonged mild hypothermia will not be a profound neuroprotectant for patients with striatal ICH, but it may nonetheless improve functional recovery in addition to its use for treating cerebral edema.
Stroke | 2013
Thomas C. Harrison; Gergely Silasi; Jamie D. Boyd; Timothy H. Murphy
Background and Purpose— Recovery from stroke is hypothesized to involve the reorganization of surviving cortical areas. To study the functional organization of sensorimotor cortex at multiple time points before and after stroke, we performed longitudinal light-based motor mapping of transgenic mice expressing light-sensitive channelrhodopsin-2 in layer 5 cortical neurons. Methods— Pulses of light stimulation were targeted to an array of cortical points, whereas evoked forelimb motor activity was recorded using noninvasive motion sensors. Intrinsic optical signal imaging produced maps of the forelimb somatosensory cortex. The resulting motor and sensory maps were repeatedly generated for weeks before and after small (0.2 mm3) photothrombotic infarcts were targeted to forelimb motor or sensory cortex. Results— Infarcts targeted to forelimb sensory or motor areas caused decreased motor output in the infarct area and spatial displacement of sensory and motor maps. Strokes in sensory cortex caused the sensory map to move into motor cortex, which adopted a more diffuse structure. Stroke in motor cortex caused a compensatory increase in peri-infarct motor output, but did not affect the position or excitability of sensory maps. Conclusions— After stroke in motor cortex, decreased motor output from the infarcted area was offset by peri-infarct excitability. Sensory stroke caused a new sensory map to form in motor cortex, which maintained its center position, despite becoming more diffuse. These data suggest that surviving regions of cortex are able to assume functions from stroke-damaged areas, although this may come at the cost of alterations in map structure.
Experimental Neurology | 2012
Angela M. Auriat; Gergely Silasi; Zhouping Wei; Rosalie Paquette; Phyllis G. Paterson; Helen Nichol; Frederick Colbourne
Iron-mediated free radical damage contributes to secondary damage after intracerebral hemorrhage (ICH). Iron is released from heme after hemoglobin breakdown and accumulates in the parenchyma over days and then persists in the brain for months (e.g., hemosiderin). This non-heme iron has been linked to cerebral edema and cell death. Deferoxamine, a ferric iron chelator, has been shown to mitigate iron-mediated damage, but results vary with less protection in the collagenase model of ICH. This study used rapid-scanning X-ray fluorescence (RS-XRF), a synchrotron-based imaging technique, to spatially map total iron and other elements (zinc, calcium and sulfur) at three survival times after collagenase-induced ICH in rats. Total iron was compared to levels of non-heme iron determined by a Ferrozine-based spectrophotometry assay in separate animals. Finally, using RS-XRF we measured iron levels in ICH rats treated with deferoxamine versus saline. The non-heme iron assay showed elevations in injured striatum at 3 days and 4 weeks post-ICH, but not at 1 day. RS-XRF also detected significantly increased iron levels at comparable times, especially notable in the peri-hematoma zone. Changes in other elements were observed in some animals, but these were inconsistent among animals. Deferoxamine diminished total parenchymal iron levels but did not attenuate neurological deficits or lesion volume at 7 days. In summary, ICH significantly increased non-heme and total iron levels. We evaluated the latter and found it to be significantly lowered by deferoxamine, but its failure to attenuate injury or functional impairment in this model raises concern about successful translation to patients.
Journal of Cerebral Blood Flow and Metabolism | 2011
Gergely Silasi; Frederick Colbourne
Delayed hypothermia salvages CA1 neurons from global ischemic injury. However, the effects of this potent neuroprotectant on endogenous repair mechanisms, such as neurogenesis, have not been clearly examined. In this study, we quantified and phenotyped newly generated cells within the hippocampus following untreated and hypothermia-treated ischemia. We first show that CA1 pyramidal neurons did not spontaneously regenerate after ischemia. We then compared the level of neuroprotection when hypothermia was initiated either during or after ischemia. Treatment efficacy decreased with longer delays, but hypothermia delayed for up to 12 hours was neuroprotective. Although bromodeoxyuridine (BrdU) incorporation was elevated in ischemic groups, CA1 neurogenesis did not occur as the BrdU label did not colocalize with neuronal nuclei (NeuN) in any of the groups. Instead, the majority of BrdU-labeled cells were Iba-positive microglia, and neuroprotective hypothermia decreased the delayed generation of microglia during the third postischemic week. Conversely, hypothermia delayed for 12 hours significantly increased the survival of newly generated dentate granule cells at 4 weeks after ischemia. Thus, our findings show that CA1 neurogenesis does not contribute to hypothermic neuroprotection. Importantly, we also show that prolonged hypothermia positively interacts with postischemic repair processes, such as neurogenesis, resulting in improved functional outcome.
Current Neurovascular Research | 2009
Gergely Silasi; Crystal L. MacLellan; Frederick Colbourne
Stroke and traumatic brain injuries often lead to cerebral edema and persistent elevations in intracranial pressure (ICP) that can be life threatening. Thus, rodent models would benefit from a simple and reliable method to measure ICP in awake, mobile animals. Up to now most techniques have been limited to anesthetized or immobile animals, which is not practical for following the prolonged elevations in ICP that follow stroke and traumatic brain injury. With an initial set of data, we describe a simple method that uses blood pressure telemetry sensors, which are commercially available (Data Sciences Int.) to measure ICP in freely moving rats for several days following implantation. Basically, an epidural cannula is secured to the skull and connected to the catheter of the telemetry probe, which is then secured inside a protective plastic shield on the skull. We confirm the sensitivity of our measurements by experimentally modifying ICP by either the Valsalva maneuver (abdominal compression) or a large ischemic brain injury. The Valsalva maneuver caused a small brief spike in ICP (lasting about 2-3 sec), whereas a transient middle cerebral artery occlusion substantially increased ICP (up to 50 mmHg) for approximately 3 days post-surgery. In summary, the current method allows for ICP to be continuously monitored in rats for several days, and thus is suitable for studies investigating mechanisms of raised ICP and in testing experimental treatments that mitigate it.
Journal of Neuroscience Methods | 2016
Gergely Silasi; Dongsheng Xiao; Matthieu P. Vanni; Andrew C. N. Chen; Timothy H. Murphy
BACKGROUND Craniotomy-based window implants are commonly used for microscopic imaging, in head-fixed rodents, however their field of view is typically small and incompatible with mesoscopic functional mapping of cortex. NEW METHOD We describe a reproducible and simple procedure for chronic through-bone wide-field imaging in awake head-fixed mice providing stable optical access for chronic imaging over large areas of the cortex for months. RESULTS The preparation is produced by applying clear-drying dental cement to the intact mouse skull, followed by a glass coverslip to create a partially transparent imaging surface. Surgery time takes about 30min. A single set-screw provides a stable means of attachment (in relation to the measured lateral and axial resolution) for mesoscale assessment without obscuring the cortical field of view. COMPARISON WITH EXISTING METHODS We demonstrate the utility of this method by showing seed-pixel functional connectivity maps generated from spontaneous cortical activity of GCAMP6 signals in both awake and anesthetized mice in longitudinal studies of up to 2 months in duration. CONCLUSIONS We propose that the intact skull preparation described here may be used for most longitudinal studies that do not require micron scale resolution and where cortical neural or vascular signals are recorded with intrinsic sensors or in transgenic mice expressing genetically encoded sensors of activity.
Behavioural Brain Research | 2009
Gergely Silasi; Frederick Colbourne
The endovascular perforation model of subarachnoid hemorrhage (SAH) is a commonly used model in rats as it is performed without a craniotomy and accurately mimics the physiological effects of SAH in humans. The long-term behavioural profile of the model, however, has not been characterized. Given that humans often have cognitive deficits following SAH, we set out to characterize the behavioural profile as well as the spontaneous temperature changes of rats following intraluminal perforation. Rats were pre-trained on three motor tasks (tapered beam, limb-use asymmetry and the horizontal ladder tasks) prior to receiving a SAH. The animals were then assessed on post-surgical days 3, 7, 14 and 21 on these tasks. At the completion of motor testing, the rats were assessed on a moving platform version of the Morris water task. Despite significant mortality (33%), SAH did not result in lasting motor deficits on any of the tasks examined. However, the SAH group did show a minor cognitive impairment in the Morris water task. In addition, SAH produced a slight, but significant elevation in body temperature (vs. sham operated rats) despite an acute decrease in general home cage activity. The majority of the animals did not have any observable infarcts and the SAH did not significantly affect cortical thickness. In summary, the endovascular perforation model of SAH results in no lasting motor deficits and only minor cognitive impairment in survivors, which alone would be difficult to evaluate in neuroprotection or rehabilitation studies.