Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jamie D. Boyd is active.

Publication


Featured researches published by Jamie D. Boyd.


Neuron | 2010

Early Increase in Extrasynaptic NMDA Receptor Signaling and Expression Contributes to Phenotype Onset in Huntington's Disease Mice

Austen J. Milnerwood; Clare M. Gladding; Mahmoud A. Pouladi; Alexandra M. Kaufman; Rochelle M. Hines; Jamie D. Boyd; Rebecca W.Y. Ko; Oana Cristina Vasuta; Rona K. Graham; Michael R. Hayden; Timothy H. Murphy; Lynn A. Raymond

N-methyl-D-aspartate receptor (NMDAR) excitotoxicity is implicated in the pathogenesis of Huntingtons disease (HD), a late-onset neurodegenerative disorder. However, NMDARs are poor therapeutic targets, due to their essential physiological role. Recent studies demonstrate that synaptic NMDAR transmission drives neuroprotective gene transcription, whereas extrasynaptic NMDAR activation promotes cell death. We report specifically increased extrasynaptic NMDAR expression, current, and associated reductions in nuclear CREB activation in HD mouse striatum. The changes are observed in the absence of dendritic morphological alterations, before and after phenotype onset, correlate with mutation severity, and require caspase-6 cleavage of mutant huntingtin. Moreover, pharmacological block of extrasynaptic NMDARs with memantine reversed signaling and motor learning deficits. Our data demonstrate elevated extrasynaptic NMDAR activity in an animal model of neurodegenerative disease. We provide a candidate mechanism linking several pathways previously implicated in HD pathogenesis and demonstrate successful early therapeutic intervention in mice.N-methyl-D-aspartate receptor (NMDAR) excitotoxicity is implicated in the pathogenesis of Huntingtons disease (HD), a late-onset neurodegenerative disorder. However, NMDARs are poor therapeutic targets, due to their essential physiological role. Recent studies demonstrate that synaptic NMDAR transmission drives neuroprotective gene transcription, whereas extrasynaptic NMDAR activation promotes cell death. We report specifically increased extrasynaptic NMDAR expression, current, and associated reductions in nuclear CREB activation in HD mouse striatum. The changes are observed in the absence of dendritic morphological alterations, before and after phenotype onset, correlate with mutation severity, and require caspase-6 cleavage of mutant huntingtin. Moreover, pharmacological block of extrasynaptic NMDARs with memantine reversed signaling and motor learning deficits. Our data demonstrate elevated extrasynaptic NMDAR activity in an animal model of neurodegenerative disease. We provide a candidate mechanism linking several pathways previously implicated in HD pathogenesis and demonstrate successful early therapeutic intervention in mice.


The Journal of Neuroscience | 2007

Extensive Turnover of Dendritic Spines and Vascular Remodeling in Cortical Tissues Recovering from Stroke

Craig E. Brown; Ping Li; Jamie D. Boyd; Kerry R. Delaney; Timothy H. Murphy

Recovery of function after stroke is thought to be dependent on the reorganization of adjacent, surviving areas of the brain. Macroscopic imaging studies (functional magnetic resonance imaging, optical imaging) have shown that peri-infarct regions adopt new functional roles to compensate for damage caused by stroke. To better understand the process by which these regions reorganize, we used in vivo two-photon imaging to examine changes in dendritic and vascular structure in cortical regions recovering from stroke. In adult control mice, dendritic arbors were relatively stable with very low levels of spine turnover (<0.5% turnover over 6 h). After stroke, however, the organization of dendritic arbors in peri-infarct cortex was fundamentally altered with both apical dendrites and blood vessels radiating in parallel from the lesion. On a finer scale, peri-infarct dendrites were exceptionally plastic, manifested by a dramatic increase in the rate of spine formation that was maximal at 1–2 weeks (5–8-fold increase), and still evident 6 weeks after stroke. These changes were selective given that turnover rates were not significantly altered in ipsilateral cortical regions more distant to the lesion (>1.5 mm). These data provide a structural framework for understanding functional and behavioral changes that accompany brain injury and suggest new targets that could be exploited by future therapies to rebuild and rewire neuronal circuits lost to stroke.


The Journal of Neuroscience | 2005

Rapid Reversible Changes in Dendritic Spine Structure In Vivo Gated by the Degree of Ischemia

Shengxiang Zhang; Jamie D. Boyd; Kerry R. Delaney; Timothy H. Murphy

Current therapeutic windows for effective application of thrombolytic agents are within 3-6 h of stroke. Although treatment can improve outcome, it is unclear what happens to synaptic fine structure during this critical period in vivo. The relationship between microcirculation and dendritic spine structure was determined in mouse somatosensory neurons during stroke. Spines were, on average, 13 μm from a capillary and were supplied by ∼100 red blood cells per second. Moderate ischemia (∼50% supply) did not significantly affect spines within 5 h; however, severe ischemia (<10% supply) caused a rapid loss of spine and dendrite structure within as little as 10 min. Surprisingly, if reperfusion occurred within 20-60 min, dendrite and spine structure was mostly restored. These data suggest that the basic dendritic wiring diagram remains mostly intact during moderate ischemia and that affected synapses could potentially contribute to functional recovery. With severe ischemia, markedly deformed dendritic structure can partially recover if reperfusion occurs early.


Nature Methods | 2009

Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice

Oliver G.S. Ayling; Thomas C. Harrison; Jamie D. Boyd; Alexander Goroshkov; Timothy H. Murphy

Traditionally, mapping the motor cortex requires electrodes to stimulate the brain and define motor output pathways. Although effective, electrode-based methods are labor-intensive, potentially damaging to the cortex and can have off-target effects. As an alternative method of motor mapping, we photostimulated transgenic mice expressing the light-sensitive ion channel channelrhodopsin-2 in predominantly layer-5 output cortical neurons. We report that optical stimulation of these neurons in vivo using a stage scanning laser system resulted in muscle excitation within 10–20 ms, which can be recorded using implanted electromyogram electrodes or by a noninvasive motion sensor. This approach allowed us to make highly reproducible automated maps of the mouse forelimb and hindlimb motor cortex much faster than with previous methods. We anticipate that the approach will facilitate the study of changes in the location and properties of motor maps after skilled training or damage to the nervous system.


Nature Neuroscience | 2013

Spontaneous cortical activity alternates between motifs defined by regional axonal projections

Majid H. Mohajerani; Allen W. Chan; Mostafa Mohsenvand; Jeffrey M. LeDue; Ruiyue Liu; David A. McVea; Jamie D. Boyd; Yu Tian Wang; Mark Reimers; Timothy H. Murphy

Using millisecond-timescale voltage-sensitive dye imaging in lightly anesthetized or awake adult mice, we show that a palette of sensory-evoked and hemisphere-wide activity motifs are represented in spontaneous activity. These motifs can reflect multiple modes of sensory processing, including vision, audition and touch. We found similar cortical networks with direct cortical activation using channelrhodopsin-2. Regional analysis of activity spread indicated modality-specific sources, such as primary sensory areas, a common posterior-medial cortical sink where sensory activity was extinguished within the parietal association area and a secondary anterior medial sink within the cingulate and secondary motor cortices for visual stimuli. Correlation analysis between functional circuits and intracortical axonal projections indicated a common framework corresponding to long-range monosynaptic connections between cortical regions. Maps of intracortical monosynaptic structural connections predicted hemisphere-wide patterns of spontaneous and sensory-evoked depolarization. We suggest that an intracortical monosynaptic connectome shapes the ebb and flow of spontaneous cortical activity.


Frontiers in Neural Circuits | 2012

In vivo Large-Scale Cortical Mapping Using Channelrhodopsin-2 Stimulation in Transgenic Mice Reveals Asymmetric and Reciprocal Relationships between Cortical Areas

Diana H. Lim; Majid H. Mohajerani; Jeffrey M. LeDue; Jamie D. Boyd; Shangbin Chen; Timothy H. Murphy

We have mapped intracortical activity in vivo independent of sensory input using arbitrary point channelrhodopsin-2 (ChR2) stimulation and regional voltage sensitive dye imaging in B6.Cg-Tg (Thy1-COP4/EYFP)18Gfng/J transgenic mice. Photostimulation of subsets of deep layer pyramidal neurons within forelimb, barrel, or visual primary sensory cortex led to downstream cortical maps that were dependent on synaptic transmission and were similar to peripheral sensory stimulation. ChR2-evoked maps confirmed homotopic connections between hemispheres and intracortical sensory and motor cortex connections. This ability of optogentically activated subpopulations of neurons to drive appropriate downstream maps suggests that mechanisms exist to allow prototypical cortical maps to self-assemble from the stimulation of neuronal subsets. Using this principle of map self-assembly, we employed ChR2 point stimulation to map connections between cortical areas that are not selectively activated by peripheral sensory stimulation or behavior. Representing the functional cortical regions as network nodes, we identified asymmetrical connection weights in individual nodes and identified the parietal association area as a network hub. Furthermore, we found that the strength of reciprocal intracortical connections between primary and secondary sensory areas are unequal, with connections from primary to secondary sensory areas being stronger than the reciprocal.


The Journal of Comparative Neurology | 1996

Laminar and columnar patterns of geniculocortical projections in the cat: relationship to cytochrome oxidase.

Jamie D. Boyd; Joanne A. Matsubara

We examined the laminar and columnar arrangement of projections from different layers of the lateral geniculate nucleus (LGN) to the visual cortex in the cat. In light of recent reports that cytochrome oxidase blobs (which in primates receive specific geniculate inputs) are also found in the visual cortex of cats, the relationship between cytochrome oxidase staining and geniculate inputs in this species was studied. Injections of wheat germ agglutinin‐conjugated horseradish peroxidase were made into the anterior “genu” of the LGN, where isoelevation contours of the geniculate layers are distorted due to the curvature of the nucleus. Consequently, anterograde labeling from the various LGN layers was topographically separated across the surface of the cortex, and labeling in a particular isoelevation representation of the cortex could be associated with a specific layer of the LGN. Labeling from the A layers, which contain X and Y cells, was coextensive with layers 4 and 6 in both area 17 and area 18, as previously reported. Labeling from the C layers, which contain Y and W cells, occupied a zone extending from the 4a/4b border to part way into layer 3 in area 17. The labeling extended throughout layer 4 in area 18. There was also labeling in layer 5a and layer 1 in both area 17 and area 18. Except in layer 1, labeling from the C layers was patchy. In the tangential plane, adjacent sections stained for cytochrome oxidase showed that the patches of labeling from the C laminae aligned with the cytochrome oxidase blobs. The cytochrome blobs were visible in layers 3 and 4a, but not in layer 4b in both areas 17 and 18. These results suggest that W cells project specifically to the layer 3 portion of the blobs, while Y cells, at least those of the C layers, project specifically to the layer 4a portion of the blobs in area 17. The heavy synaptic drive of the Y cells is probably the cause of the elevated metabolism, and thus, higher cytochrome oxidase activity, of the blobs.


Journal of Cerebral Blood Flow and Metabolism | 2010

Longitudinal in vivo imaging reveals balanced and branch-specific remodeling of mature cortical pyramidal dendritic arbors after stroke.

Craig E. Brown; Jamie D. Boyd; Timothy H. Murphy

The manner in which fully mature peri-infarct cortical dendritic arbors remodel after stroke, and thus may possibly contribute to stroke-induced changes in cortical receptive fields, is unknown. In this study, we used longitudinal in vivo two-photon imaging to investigate the extent to which brain ischemia can trigger dendritic remodeling of pyramidal neurons in the adult mouse somatosensory cortex, and to determine the nature by which remodeling proceeds over time and space. Before the induction of stroke, dendritic arbors were relatively stable over several weeks. However, after stroke, apical dendritic arbor remodeling increased significantly (dendritic tip growth and retraction), particularly within the first 2 weeks after stroke. Despite a threefold increase in structural remodeling, the net length of arbors did not change significantly over time because dendrite extensions away from the stroke were balanced by the shortening of tips near the infarct. Therefore, fully mature cortical pyramidal neurons retain the capacity for extensive structural plasticity and remodel in a balanced and branch-specific manner.


PLOS ONE | 2012

MeCP2 Mutation Results in Compartment-Specific Reductions in Dendritic Branching and Spine Density in Layer 5 Motor Cortical Neurons of YFP-H Mice

David P. Stuss; Jamie D. Boyd; David B. Levin; Kerry R. Delaney

Rett Syndrome (RTT) is a neurodevelopmental disorder predominantly caused by mutations in the X-linked gene MECP2. A primary feature of the syndrome is the impaired maturation and maintenance of excitatory synapses in the central nervous system (CNS). Different RTT mouse models have shown that particular Mecp2 mutations have highly variable effects on neuronal architecture. Distinguishing MeCP2 mutant cellular phenotypes therefore demands analysis of specific mutations in well-defined neuronal subpopulations. We examined a transgenically labeled subset of cortical neurons in YFP-H mice crossed with the Mecp2tm1.1Jae mutant line. YFP+ Layer 5 pyramidal neurons in the motor cortex of wildtype and hemizygous mutant male mice were examined for differences in dendrite morphology and spine density. Total basal dendritic length was decreased by 18.6% due to both shorter dendrites and reduced branching proximal to the soma. Tangential dendrite lengths in the apical tuft were reduced by up to 26.6%. Spine density was reduced by 47.4% in the apical tuft and 54.5% in secondary apical dendrites, but remained unaffected in primary apical and proximal basal dendrites. We also found that MeCP2 mutation reduced the number of YFP+ cells in YFP-H mice by up to 72% in various cortical regions without affecting the intensity of YFP expression in individual cells. Our results support the view that the effects of MeCP2 mutation are highly context-dependent and cannot be generalized across mutation types and cell populations.


Stroke | 2013

Displacement of Sensory Maps and Disorganization of Motor Cortex After Targeted Stroke in Mice

Thomas C. Harrison; Gergely Silasi; Jamie D. Boyd; Timothy H. Murphy

Background and Purpose— Recovery from stroke is hypothesized to involve the reorganization of surviving cortical areas. To study the functional organization of sensorimotor cortex at multiple time points before and after stroke, we performed longitudinal light-based motor mapping of transgenic mice expressing light-sensitive channelrhodopsin-2 in layer 5 cortical neurons. Methods— Pulses of light stimulation were targeted to an array of cortical points, whereas evoked forelimb motor activity was recorded using noninvasive motion sensors. Intrinsic optical signal imaging produced maps of the forelimb somatosensory cortex. The resulting motor and sensory maps were repeatedly generated for weeks before and after small (0.2 mm3) photothrombotic infarcts were targeted to forelimb motor or sensory cortex. Results— Infarcts targeted to forelimb sensory or motor areas caused decreased motor output in the infarct area and spatial displacement of sensory and motor maps. Strokes in sensory cortex caused the sensory map to move into motor cortex, which adopted a more diffuse structure. Stroke in motor cortex caused a compensatory increase in peri-infarct motor output, but did not affect the position or excitability of sensory maps. Conclusions— After stroke in motor cortex, decreased motor output from the infarcted area was offset by peri-infarct excitability. Sensory stroke caused a new sensory map to form in motor cortex, which maintained its center position, despite becoming more diffuse. These data suggest that surviving regions of cortex are able to assume functions from stroke-damaged areas, although this may come at the cost of alterations in map structure.

Collaboration


Dive into the Jamie D. Boyd's collaboration.

Top Co-Authors

Avatar

Timothy H. Murphy

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Gergely Silasi

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Joanne A. Matsubara

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas C. Harrison

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Jeff M. LeDue

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Jeffrey M. LeDue

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Alexandra M. Kaufman

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Austen J. Milnerwood

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Brett J. Hilton

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge