Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gero Wedemann is active.

Publication


Featured researches published by Gero Wedemann.


Journal of Molecular Biology | 1999

Compartmentalization of interphase chromosomes observed in simulation and experiment.

Christian Münkel; Roland Eils; Steffen Dietzel; Daniele Zink; Carsten Mehring; Gero Wedemann; Thomas Cremer; Jörg Langowski

Human interphase chromosomes were simulated as a flexible fiber with excluded volume interaction, which represents the chromatin fiber of each chromosome. For the higher-order structures, we assumed a folding into 120 kb loops and an arrangement of these loops into rosette-like subcompartments. Chromosomes consist of subcompartments connected by small fragments of chromatin. Number and size of subcompartments correspond with chromosome bands in early prophase. We observed essentially separated chromosome arms in both our model calculations and confocal laser scanning microscopy, and measured the same overlap in simulation and experiment. Overlap, number and size of chromosome 15 subcompartments of our model chromosomes agree with subchromosomal foci composed of either early or late replicating chromatin, which were observed at all stages of the cell cycle and possibly provide a functionally relevant unit of chromosome territory compartmentalization. Computed distances of chromosome specific markers both on Mb and 10-100 Mb scale agree with fluorescent in situ hybridization measurements under different preparation conditions.


Biophysical Journal | 2008

Nucleosome Geometry and Internucleosomal Interactions Control the Chromatin Fiber Conformation

Nick Kepper; Dietrich Foethke; René Stehr; Gero Wedemann; Karsten Rippe

Based on model structures with atomic resolution, a coarse-grained model for the nucleosome geometry was implemented. The dependence of the chromatin fiber conformation on the spatial orientation of nucleosomes and the path and length of the linker DNA was systematically explored by Monte Carlo simulations. Two fiber types were analyzed in detail that represent nucleosome chains without and with linker histones, respectively: two-start helices with crossed-linker DNA (CL conformation) and interdigitated one-start helices (ID conformation) with different nucleosome tilt angles. The CL conformation was derived from a tetranucleosome crystal structure that was extended into a fiber. At thermal equilibrium, the fiber shape persisted but relaxed into a structure with a somewhat lower linear mass density of 3.1 +/- 0.1 nucleosomes/11 nm fiber. Stable ID fibers required local nucleosome tilt angles between 40 degrees and 60 degrees. For these configurations, much higher mass densities of up to 7.9 +/- 0.2 nucleosomes/11 nm fiber were obtained. A model is proposed, in which the transition between a CL and ID fiber is mediated by relatively small changes of the local nucleosome geometry. These were found to be in very good agreement with changes induced by linker histone H1 binding as predicted from the high resolution model structures.


Biophysical Journal | 2008

The Effect of Internucleosomal Interaction on Folding of the Chromatin Fiber

René Stehr; Nick Kepper; Karsten Rippe; Gero Wedemann

The folding of the nucleosome chain into a chromatin fiber modulates DNA accessibility and is therefore an important factor for the control of gene expression. The fiber conformation depends crucially on the interaction between individual nucleosomes. However, this parameter has not been accurately determined experimentally, and it is affected by posttranslational histone modifications and binding of chromosomal proteins. Here, the effect of different internucleosomal interaction strengths on the fiber conformation was investigated by Monte Carlo computer simulations. The fiber geometry was modeled to fit that of chicken erythrocyte chromatin, which has been examined in numerous experimental studies. In the Monte Carlo simulation, the nucleosome shape was described as an oblate spherocylinder, and a replica exchange protocol was developed to reach thermal equilibrium for a broad range of internucleosomal interaction energies. The simulations revealed the large impact of the nucleosome geometry and the nucleosome repeat length on the compaction of the chromatin fiber. At high internucleosomal interaction energies, a lateral self-association of distant fiber parts and an interdigitation of nucleosomes were apparent. These results identify key factors for the control of the compaction and higher order folding of the chromatin fiber.


Biophysical Journal | 2011

Dissecting DNA-Histone Interactions in the Nucleosome by Molecular Dynamics Simulations of DNA Unwrapping

Ramona Ettig; Nick Kepper; René Stehr; Gero Wedemann; Karsten Rippe

The nucleosome complex of DNA wrapped around a histone protein octamer organizes the genome of eukaryotes and regulates the access of protein factors to the DNA. We performed molecular dynamics simulations of the nucleosome in explicit water to study the dynamics of its histone-DNA interactions. A high-resolution histone-DNA interaction map was derived that revealed a five-nucleotide periodicity, in which the two DNA strands of the double helix made alternating contacts. On the 100-ns timescale, the histone tails mostly maintained their initial positions relative to the DNA, and the spontaneous unwrapping of DNA was limited to 1-2 basepairs. In steered molecular dynamics simulations, external forces were applied to the linker DNA to investigate the unwrapping pathway of the nucleosomal DNA. In comparison with a nucleosome without the unstructured N-terminal histone tails, the following findings were obtained: 1), Two main barriers during unwrapping were identified at DNA position ±70 and ±45 basepairs relative to the central DNA basepair at the dyad axis. 2), DNA interactions of the histone H3 N-terminus and the histone H2A C-terminus opposed the initiation of unwrapping. 3), The N-terminal tails of H2A, H2B, and H4 counteracted the unwrapping process at later stages and were essential determinants of nucleosome dynamics. Our detailed analysis of DNA-histone interactions revealed molecular mechanisms for modulating access to nucleosomal DNA via conformational rearrangements of its structure.


Biopolymers | 2011

Force spectroscopy of chromatin fibers: Extracting energetics and structural information from Monte Carlo simulations

Nick Kepper; Ramona Ettig; René Stehr; Sven Marnach; Gero Wedemann; Karsten Rippe

The folding of the nucleosome chain into a chromatin fiber is a central factor for controlling the DNA access of protein factors involved in transcription, DNA replication and repair. Force spectroscopy experiments with chromatin fibers are ideally suited to dissect the interactions that drive this process, and to probe the underlying fiber conformation. However, the interpretation of the experimental data is fraught with difficulties due to the complex interplay of the nucleosome geometry and the different energy terms involved. Here, we apply a Monte Carlo simulation approach to derive virtual chromatin fiber force spectroscopy curves. In the simulations, the effect of the nucleosome geometry, repeat length, nucleosome-nucleosome interaction potential, and the unwrapping of the DNA from the histone protein core on the shape of the force-extension curves was investigated. These simulations provide a framework for the evaluation of experimental data sets. We demonstrate how the relative contributions of DNA bending and twisting, nucleosome unstacking and unwrapping the nucleosomal DNA from the histone octamer can be dissected for a given fiber geometry.


Biophysical Journal | 2012

Probing the elasticity of DNA on short length scales by modeling supercoiling under tension.

Robert Schöpflin; Hergen Brutzer; Oliver Müller; Ralf Seidel; Gero Wedemann

The wormlike-chain (WLC) model is widely used to describe the energetics of DNA bending. Motivated by recent experiments, alternative, so-called subelastic chain models were proposed that predict a lower elastic energy of highly bent DNA conformations. Until now, no unambiguous verification of these models has been obtained because probing the elasticity of DNA on short length scales remains challenging. Here we investigate the limits of the WLC model using coarse-grained Monte Carlo simulations to model the supercoiling of linear DNA molecules under tension. At a critical supercoiling density, the DNA extension decreases abruptly due to the sudden formation of a plectonemic structure. This buckling transition is caused by the large energy required to form the tightly bent end-loop of the plectoneme and should therefore provide a sensitive benchmark for model evaluation. Although simulations based on the WLC energetics could quantitatively reproduce the buckling measured in magnetic tweezers experiments, the buckling almost disappears for the tested linear subelastic chain model. Thus, our data support the validity of a harmonic bending potential even for small bending radii down to 3.5 nm.


Biophysical Journal | 2010

Exploring the Conformational Space of Chromatin Fibers and Their Stability by Numerical Dynamic Phase Diagrams

René Stehr; Robert Schöpflin; Ramona Ettig; Nick Kepper; Karsten Rippe; Gero Wedemann

The three-dimensional structure of chromatin affects DNA accessibility and is therefore a key regulator of gene expression. However, the path of the DNA between consecutive nucleosomes, and the resulting chromatin fiber organization remain controversial. The conformational space available for the folding of the nucleosome chain has been analytically described by phase diagrams with a two-angle model, which describes the chain trajectory by a DNA entry-exit angle at the nucleosome and a torsion angle between consecutive nucleosomes. Here, a novel type of numerical phase diagrams is introduced that relates the geometric phase space to the energy associated with a given chromatin conformation. The resulting phase diagrams revealed differences in the energy landscape that reflect the probability of a given conformation to form in thermal equilibrium. Furthermore, we investigated the effects of entropy and additional degrees of freedom in the dynamic phase diagrams by performing Monte Carlo simulations of the initial chain trajectories. Using our approach, we were able to demonstrate that conformations that initially were geometrically impossible could evolve into energetically favorable states in thermal equilibrium due to DNA bending and torsion. In addition, dynamic phase diagrams were applied to identify chromatin fibers that reflect certain experimentally determined features.


Bioinformatics | 2013

Modeling nucleosome position distributions from experimental nucleosome positioning maps

Robert Schöpflin; Vladimir B. Teif; Oliver Müller; Christin Weinberg; Karsten Rippe; Gero Wedemann

MOTIVATION Recent experimental advancements allow determining positions of nucleosomes for complete genomes. However, the resulting nucleosome occupancy maps are averages of heterogeneous cell populations. Accordingly, they represent a snapshot of a dynamic ensemble at a single time point with an overlay of many configurations from different cells. To study the organization of nucleosomes along the genome and to understand the mechanisms of nucleosome translocation, it is necessary to retrieve features of specific conformations from the population average. RESULTS Here, we present a method for identifying non-overlapping nucleosome configurations that combines binary-variable analysis and a Monte Carlo approach with a simulated annealing scheme. In this manner, we obtain specific nucleosome configurations and optimized solutions for the complex positioning patterns from experimental data. We apply the method to compare nucleosome positioning at transcription factor binding sites in different mouse cell types. Our method can model nucleosome translocations at regulatory genomic elements and generate configurations for simulations of the spatial folding of the nucleosome chain. AVAILABILITY Source code, precompiled binaries, test data and a web-based test installation are freely available at http://bioinformatics.fh-stralsund.de/nucpos/


Journal of Physics: Condensed Matter | 2015

Affinity, stoichiometry and cooperativity of heterochromatin protein 1?(HP1) binding to nucleosomal arrays

Vladimir B. Teif; Nick Kepper; Klaus Yserentant; Gero Wedemann; Karsten Rippe

Heterochromatin protein 1 (HP1) participates in establishing and maintaining heterochromatin via its histone-modification-dependent chromatin interactions. In recent papers HP1 binding to nucleosomal arrays was measured in vitro and interpreted in terms of nearest-neighbour cooperative binding. This mode of chromatin interaction could lead to the spreading of HP1 along the nucleosome chain. Here, we reanalysed previous data by representing the nucleosome chain as a 1D binding lattice and showed how the experimental HP1 binding isotherms can be explained by a simpler model without cooperative interactions between neighboring HP1 dimers. Based on these calculations and spatial models of dinucleosomes and nucleosome chains, we propose that binding stoichiometry depends on the nucleosome repeat length (NRL) rather than protein interactions between HP1 dimers. According to our calculations, more open nucleosome arrays with long DNA linkers are characterized by a larger number of binding sites in comparison to chains with a short NRL. Furthermore, we demonstrate by Monte Carlo simulations that the NRL dependent folding of the nucleosome chain can induce allosteric changes of HP1 binding sites. Thus, HP1 chromatin interactions can be modulated by the change of binding stoichiometry and the type of binding to condensed (methylated) and non-condensed (unmethylated) nucleosome arrays in the absence of direct interactions between HP1 dimers.


PLOS ONE | 2012

Are metastases from metastases clinical relevant? Computer modelling of cancer spread in a case of hepatocellular carcinoma.

Anja Bethge; Udo Schumacher; Andreas Wree; Gero Wedemann

Background Metastasis formation remains an enigmatic process and one of the main questions recently asked is whether metastases are able to generate further metastases. Different models have been proposed to answer this question; however, their clinical significance remains unclear. Therefore a computer model was developed that permits comparison of the different models quantitatively with clinical data and that additionally predicts the outcome of treatment interventions. Methods The computer model is based on discrete events simulation approach. On the basis of a case from an untreated patient with hepatocellular carcinoma and its multiple metastases in the liver, it was evaluated whether metastases are able to metastasise and in particular if late disseminated tumour cells are still capable to form metastases. Additionally, the resection of the primary tumour was simulated. The simulation results were compared with clinical data. Results The simulation results reveal that the number of metastases varies significantly between scenarios where metastases metastasise and scenarios where they do not. In contrast, the total tumour mass is nearly unaffected by the two different modes of metastasis formation. Furthermore, the results provide evidence that metastasis formation is an early event and that late disseminated tumour cells are still capable of forming metastases. Simulations also allow estimating how the resection of the primary tumour delays the patients death. Conclusion The simulation results indicate that for this particular case of a hepatocellular carcinoma late metastases, i.e., metastases from metastases, are irrelevant in terms of total tumour mass. Hence metastases seeded from metastases are clinically irrelevant in our model system. Only the first metastases seeded from the primary tumour contribute significantly to the tumour burden and thus cause the patients death.

Collaboration


Dive into the Gero Wedemann's collaboration.

Top Co-Authors

Avatar

Karsten Rippe

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Nick Kepper

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Ramona Ettig

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hergen Brutzer

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jörg Langowski

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vladimir B. Teif

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Frank Grosveld

German Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge