Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geun Ho Ahn is active.

Publication


Featured researches published by Geun Ho Ahn.


Science | 2016

MoS2 transistors with 1-nanometer gate lengths

Sujay B. Desai; Surabhi R. Madhvapathy; Angada B. Sachid; Juan Pablo Llinas; Qingxiao Wang; Geun Ho Ahn; Gregory Pitner; Moon J. Kim; Jeffrey Bokor; Chenming Hu; H.-S. Philip Wong; Ali Javey

A flatter route to shorter channels High-performance silicon transistors can have gate lengths as short as 5 nm before source-drain tunneling and loss of electrostatic control lead to unacceptable leakage current when the device is off. Desai et al. explored the use of MoS2 as a channel material, given that its electronic properties as thin layers should limit such leakage. A transistor with a 1-nm physical gate was constructed with a MoS2 bilayer channel and a single-walled carbon nanotube gate electrode. Excellent switching characteristics and an on-off state current ratio of ∼106 were observed. Science, this issue p. 99 Molybdenum disulfide transistors with carbon nanotube gate electrodes have channel lengths below the silicon scaling limit. Scaling of silicon (Si) transistors is predicted to fail below 5-nanometer (nm) gate lengths because of severe short channel effects. As an alternative to Si, certain layered semiconductors are attractive for their atomically uniform thickness down to a monolayer, lower dielectric constants, larger band gaps, and heavier carrier effective mass. Here, we demonstrate molybdenum disulfide (MoS2) transistors with a 1-nm physical gate length using a single-walled carbon nanotube as the gate electrode. These ultrashort devices exhibit excellent switching characteristics with near ideal subthreshold swing of ~65 millivolts per decade and an On/Off current ratio of ~106. Simulations show an effective channel length of ~3.9 nm in the Off state and ~1 nm in the On state.


Nano Letters | 2016

Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides

Matin Amani; Peyman Taheri; Rafik Addou; Geun Ho Ahn; Daisuke Kiriya; Der Hsien Lien; Joel W. Ager; Robert M. Wallace; Ali Javey

Optoelectronic devices based on two-dimensional (2D) materials have shown tremendous promise over the past few years; however, there are still numerous challenges that need to be overcome to enable their application in devices. These include improving their poor photoluminescence (PL) quantum yield (QY) as well as better understanding of exciton-based recombination kinetics. Recently, we developed a chemical treatment technique using an organic superacid, bis(trifluoromethane)sulfonimide (TFSI), which was shown to improve the quantum yield in MoS2 from less than 1% to over 95%. Here, we perform detailed steady-state and transient optical characterization on some of the most heavily studied direct bandgap 2D materials, specifically WS2, MoS2, WSe2, and MoSe2, over a large pump dynamic range to study the recombination mechanisms present in these materials. We then explore the effects of TFSI treatment on the PL QY and recombination kinetics for each case. Our results suggest that sulfur-based 2D materials are amenable to repair/passivation by TFSI, while the mechanism is thus far ineffective on selenium based systems. We also show that biexcitonic recombination is the dominant nonradiative pathway in these materials and that the kinetics for TFSI treated MoS2 and WS2 can be described using a simple two parameter model.


Applied Physics Letters | 2016

2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures

Tania Roy; Mahmut Tosun; Mark Hettick; Geun Ho Ahn; Chenming Hu; Ali Javey

Two-dimensional materials present a versatile platform for developing steep transistors due to their uniform thickness and sharp band edges. We demonstrate 2D-2D tunneling in a WSe2/SnSe2 van der Waals vertical heterojunction device, where WSe2 is used as the gate controlled p-layer and SnSe2 is the degenerately n-type layer. The van der Waals gap facilitates the regulation of band alignment at the heterojunction, without the necessity of a tunneling barrier. ZrO2 is used as the gate dielectric, allowing the scaling of gate oxide to improve device subthreshold swing. Efficient gate control and clean interfaces yield a subthreshold swing of ∼100 mV/dec for >2 decades of drain current at room temperature, hitherto unobserved in 2D-2D tunneling devices. The subthreshold swing is independent of temperature, which is a clear signature of band-to-band tunneling at the heterojunction. A maximum switching ratio ION/IOFF of 107 is obtained. Negative differential resistance in the forward bias characteristics is observed at 77 K. This work bodes well for the possibilities of two-dimensional materials for the realization of energy-efficient future-generation electronics.


ACS Nano | 2016

High Luminescence Efficiency in MoS2 Grown by Chemical Vapor Deposition

Matin Amani; Robert A. Burke; Xiang Ji; Peida Zhao; Der-Hsien Lien; Peyman Taheri; Geun Ho Ahn; Daisuke Kirya; Joel W. Ager; Eli Yablonovitch; Jing Kong; Madan Dubey; Ali Javey

One of the major challenges facing the rapidly growing field of two-dimensional (2D) transition metal dichalcogenides (TMDCs) is the development of growth techniques to enable large-area synthesis of high-quality materials. Chemical vapor deposition (CVD) is one of the leading techniques for the synthesis of TMDCs; however, the quality of the material produced is limited by defects formed during the growth process. A very useful nondestructive technique that can be utilized to probe defects in semiconductors is the room-temperature photoluminescence (PL) quantum yield (QY). It was recently demonstrated that a PL QY near 100% can be obtained in MoS2 and WS2 monolayers prepared by micromechanical exfoliation by treating samples with an organic superacid: bis(trifluoromethane)sulfonimide (TFSI). Here we have performed a thorough exploration of this chemical treatment on CVD-grown MoS2 samples. We find that the as-grown monolayers must be transferred to a secondary substrate, which releases strain, to obtain high QY by TFSI treatment. Furthermore, we find that the sulfur precursor temperature during synthesis of the MoS2 plays a critical role in the effectiveness of the treatment. By satisfying the aforementioned conditions we show that the PL QY of CVD-grown monolayers can be improved from ∼0.1% in the as-grown case to ∼30% after treatment, with enhancement factors ranging from 100 to 1500× depending on the initial monolayer quality. We also found that after TFSI treatment the PL emission from MoS2 films was visible by eye despite the low absorption (5-10%). The discovery of an effective passivation strategy will speed the development of scalable high-performance optoelectronic and electronic devices based on MoS2.


ACS Nano | 2016

Air-Stable n-Doping of WSe2 by Anion Vacancy Formation with Mild Plasma Treatment

Mahmut Tosun; Leslie Chan; Matin Amani; Tania Roy; Geun Ho Ahn; Peyman Taheri; Carlo Carraro; Joel W. Ager; Roya Maboudian; Ali Javey

Transition metal dichalcogenides (TMDCs) have been extensively explored for applications in electronic and optoelectronic devices due to their unique material properties. However, the presence of large contact resistances is still a fundamental challenge in the field. In this work, we study defect engineering by using a mild plasma treatment (He or H2) as an approach to reduce the contact resistance to WSe2. Material characterization by X-ray photoelectron spectroscopy, photoluminescence, and Kelvin probe force microscopy confirm defect-induced n-doping, up to degenerate level, which is attributed to the creation of anion (Se) vacancies. The plasma treatment is adopted in the fabrication process flow of WSe2 n-type metal-oxide-semiconductor field-effect transistors to selectively create anion vacancies at the metal contact regions. Due to lowering the metal contact resistance, improvements in the device performance metrics such as a 20× improvement in ON current and a nearly ideal subthreshold swing value of 66 mV/dec are observed. This work demonstrates that defect engineering at the contact regions can be utilized as a reliable scheme to realize high-performance electronic and optoelectronic TMDC devices.


ACS Nano | 2016

Electrical Properties of Synthesized Large-Area MoS2 Field-Effect Transistors Fabricated with Inkjet-Printed Contacts

Tae-Young Kim; Matin Amani; Geun Ho Ahn; Younggul Song; Ali Javey; Seungjun Chung; Takhee Lee

We report the electrical properties of synthesized large-area monolayer molybdenum disulfide (MoS2) field-effect transistors (FETs) with low-cost inkjet-printed Ag electrodes. The monolayer MoS2 film was grown by a chemical vapor deposition (CVD) method, and the top-contact Ag source/drain electrodes (S/D) were deposited onto the films using a low-cost drop-on-demand inkjet-printing process without any masks and surface treatments. The electrical characteristics of FETs were comparable to those fabricated by conventional deposition methods such as photo- or electron beam lithography. The contact properties between the S/D and the semiconductor layer were also evaluated using the Y-function method and an analysis of the output characteristic at the low drain voltage regimes. Furthermore, the electrical instability under positive gate-bias stress was studied to investigate the charge-trapping mechanism of the FETs. CVD-grown large-area monolayer MoS2 FETs with inkjet-printed contacts may represent an attractive approach for realizing large-area and low-cost thin-film electronics.


Scientific Reports | 2016

Origin of multi-level switching and telegraphic noise in organic nanocomposite memory devices.

Younggul Song; Hyunhak Jeong; Seungjun Chung; Geun Ho Ahn; Tae-Young Kim; Jingon Jang; Daekyoung Yoo; Heejun Jeong; Ali Javey; Takhee Lee

The origin of negative differential resistance (NDR) and its derivative intermediate resistive states (IRSs) of nanocomposite memory systems have not been clearly analyzed for the past decade. To address this issue, we investigate the current fluctuations of organic nanocomposite memory devices with NDR and the IRSs under various temperature conditions. The 1/f noise scaling behaviors at various temperature conditions in the IRSs and telegraphic noise in NDR indicate the localized current pathways in the organic nanocomposite layers for each IRS. The clearly observed telegraphic noise with a long characteristic time in NDR at low temperature indicates that the localized current pathways for the IRSs are attributed to trapping/de-trapping at the deep trap levels in NDR. This study will be useful for the development and tuning of multi-bit storable organic nanocomposite memory device systems.


ACS Nano | 2017

Mid-Wave Infrared Photoconductors Based on Black Phosphorus-Arsenic Alloys

Matin Amani; Emma Regan; James Bullock; Geun Ho Ahn; Ali Javey

Black phosphorus (b-P) and more recently black phosphorus-arsenic alloys (b-PAs) are candidate 2D materials for the detection of mid-wave and potentially long-wave infrared radiation. However, studies to date have utilized laser-based measurements to extract device performance and the responsivity of these detectors. As such, their performance under thermal radiation and spectral response has not been fully characterized. Here, we perform a systematic investigation of gated-photoconductors based on b-PAs alloys as a function of thickness over the composition range of 0-91% As. Infrared transmission and reflection measurements are performed to determine the bandgap of the various compositions. The spectrally resolved photoresponse for various compositions in this material system is investigated to confirm absorption measurements, and we find that the cutoff wavelength can be tuned from 3.9 to 4.6 μm over the studied compositional range. In addition, we investigated the temperature-dependent photoresponse and performed calibrated responsivity measurements using blackbody flood illumination. Notably, we find that the specific detectivity (D*) can be optimized by adjusting the thickness of the b-P/b-PAs layer to maximize absorption and minimize dark current. We obtain a peak D* of 6 × 1010 cm Hz1/2 W-1 and 2.4 × 1010 cm Hz1/2 W-1 for pure b-P and b-PAs (91% As), respectively, at room temperature, which is an order of magnitude higher than commercially available mid-wave infrared detectors operating at room temperature.


Nature Communications | 2018

Large-area and bright pulsed electroluminescence in monolayer semiconductors

Der-Hsien Lien; Matin Amani; Sujay B. Desai; Geun Ho Ahn; Kevin Han; Jr-Hau He; Joel W. Ager; Ming C. Wu; Ali Javey

Transition-metal dichalcogenide monolayers have naturally terminated surfaces and can exhibit a near-unity photoluminescence quantum yield in the presence of suitable defect passivation. To date, steady-state monolayer light-emitting devices suffer from Schottky contacts or require complex heterostructures. We demonstrate a transient-mode electroluminescent device based on transition-metal dichalcogenide monolayers (MoS2, WS2, MoSe2, and WSe2) to overcome these problems. Electroluminescence from this dopant-free two-terminal device is obtained by applying an AC voltage between the gate and the semiconductor. Notably, the electroluminescence intensity is weakly dependent on the Schottky barrier height or polarity of the contact. We fabricate a monolayer seven-segment display and achieve the first transparent and bright millimeter-scale light-emitting monolayer semiconductor device.Atomically thin monolayers with high photoluminescence quantum yield are promising for optoelectronic and lighting applications. Here, the authors fabricate a transient-mode electroluminescent device to bypass the requirement of ohmic contacts for electrons and holes, and observe millimetre-scale light emission from a transparent 2D display.


Nanotechnology | 2017

Analysis of the interface characteristics of CVD-grown monolayer MoS2 by noise measurements

Taeyoung Kim; Younggul Song; Kyungjune Cho; Matin Amani; Geun Ho Ahn; Jae-Keun Kim; Jinsu Pak; Seungjun Chung; Ali Javey; Takhee Lee

We investigated the current-voltage and noise characteristics of two-dimensional (2D) monolayer molybdenum disulfide (MoS2) synthesized by chemical vapor deposition (CVD). A large number of trap states were produced during the CVD process of synthesizing MoS2, resulting in a disordered monolayer MoS2 system. The interface trap density between CVD-grown MoS2 and silicon dioxide was extracted from the McWhorter surface noise model. Notably, generation-recombination noise which is attributed to charge trap states was observed at the low carrier density regime. The relation between the temperature and resistance following the power law of a 2D inverted-random void model supports the idea that disordered CVD-grown monolayer MoS2 can be analyzed using a percolation theory. This study can offer a viewpoint to interpret synthesized low-dimensional materials as highly disordered systems.

Collaboration


Dive into the Geun Ho Ahn's collaboration.

Top Co-Authors

Avatar

Ali Javey

University of California

View shared research outputs
Top Co-Authors

Avatar

Matin Amani

University of California

View shared research outputs
Top Co-Authors

Avatar

Der-Hsien Lien

University of California

View shared research outputs
Top Co-Authors

Avatar

Joel W. Ager

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seungjun Chung

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Takhee Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Peyman Taheri

University of California

View shared research outputs
Top Co-Authors

Avatar

Younggul Song

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Kevin Han

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge