Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ghassan Mouneimne is active.

Publication


Featured researches published by Ghassan Mouneimne.


Journal of Cell Biology | 2004

Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation

Ghassan Mouneimne; Lilian Soon; Vera DesMarais; Mazen Sidani; Xiaoyan Song; Shu Chin Yip; Mousumi Ghosh; Robert J. Eddy; Jonathan M. Backer; John Condeelis

The epidermal growth factor (EGF)–induced increase in free barbed ends, resulting in actin polymerization at the leading edge of the lamellipodium in carcinoma cells, occurs as two transients: an early one at 1 min and a late one at 3 min. Our results reveal that phospholipase (PLC) is required for triggering the early barbed end transient. Phosphoinositide-3 kinase selectively regulates the late barbed end transient. Inhibition of PLC inhibits cofilin activity in cells during the early transient, delays the initiation of protrusions, and inhibits the ability of cells to sense a gradient of EGF. Suppression of cofilin, using either small interfering RNA silencing or function-blocking antibodies, selectively inhibits the early transient. Therefore, our results demonstrate that the early PLC and cofilin-dependent barbed end transient is required for the initiation of protrusions and is involved in setting the direction of cell movement in response to EGF.


Current Biology | 2006

Spatial and Temporal Control of Cofilin Activity Is Required for Directional Sensing during Chemotaxis

Ghassan Mouneimne; Vera DesMarais; Mazen Sidani; Eliana Scemes; Weigang Wang; Xiaoyan Song; Robert J. Eddy; John Condeelis

BACKGROUND Previous work has led to the hypothesis that cofilin severing, as regulated by PLC, is involved in chemotactic sensing. We have tested this hypothesis by investigating whether activation of endogenous cofilin is spatially and temporally linked to sensing an EGF point source in carcinoma cells. RESULTS We demonstrate that inhibition of endogenous cofilin activity with either siRNA or overexpression of LIMK suppresses directional sensing in carcinoma cells. LIMK siRNA knockdown, which suppresses cofilin phosphorylation, and microinjection of S3C cofilin, a cofilin mutant that is constitutively active and not phosphorylated by LIMK, also inhibits directional sensing and chemotaxis. These results indicate that phosphorylation of cofilin by LIMK, in addition to cofilin activity, is required for chemotaxis. Cofilin activity concentrates rapidly at the newly formed leading edge facing the gradient, whereas cofilin phosphorylation increases throughout the cell. Quantification of these results indicates that the amplification of asymmetric actin polymerization required for protrusion toward the EGF gradient occurs at the level of cofilin but not at the level of PLC activation by EGFR. CONCLUSIONS These results indicate that local activation of cofilin by PLC and its global inactivation by LIMK phosphorylation combine to generate the local asymmetry of actin polymerization required for chemotaxis.


Journal of Cell Science | 2006

Initiation of cofilin activity in response to EGF is uncoupled from cofilin phosphorylation and dephosphorylation in carcinoma cells.

Xiaoyan Song; Xiaoming Chen; Hideki Yamaguchi; Ghassan Mouneimne; John Condeelis; Robert J. Eddy

It has been demonstrated that the actin-severing activity of cofilin can be downregulated by LIM kinase (LIMK)-dependent phosphorylation at residue Ser3. Chemotactic stimulaton in various cell types induces cofilin dephosphorylation, suggesting that cofilin activation in these cells occurs by a dephosphorylation mechanism. However, resting metastatic carcinoma cells have the majority of their cofilin in a dephosphorylated but largely inactive state. Stimulation with epidermal growth factor (EGF) induces an increase in cofilin activity after 60 seconds together with an increase in phosphorylated cofilin (p-cofilin), indicating that cofilin dephosphorylation is not coupled to cofilin activation in these cells. Suppression of LIMK function by inhibiting Rho-associated protein kinase (ROCK) or LIMK siRNA inhibited the EGF-induced cofilin phosphorylation but had no effect on cofilin activity or cofilin-dependent lamellipod protrusion induced by EGF. Correlation analysis revealed that cofilin, p-cofilin and LIMK are not colocalized, and changes in the location of these proteins upon stimulation with EGF indicate that they are not functionally coupled. Phospholipase C, which has been implicated in cofilin activation following stimulation with EGF, does not regulate p-cofilin levels following stimulation with EGF. Therefore, our results do not support a model for the initial activation of cofilin by dephosphorylation in response to chemoattractant stimulation in metastatic carcinoma cells.


Cytoskeleton | 2009

N-WASP and cortactin are involved in invadopodium-dependent chemotaxis to EGF in breast tumor cells

Vera DesMarais; Hideki Yamaguchi; Matthew Oser; Lilian Soon; Ghassan Mouneimne; Corina Sarmiento; Robert J. Eddy; John Condeelis

Metastatic mammary carcinoma cells, which have previously been observed to form mature, matrix degrading invadopodia on a thick ECM matrix, are able to form invadopodia with similar characteristics on glass without previously applied matrix. They form in response to epidermal growth factor (EGF), and contain the usual invadopodium core proteins N-WASP, Arp2/3, cortactin, cofilin, and F-actin. The study of invadopodia on glass allows for higher resolution analysis including the use of total internal reflection microscopy and analysis of their relationship to other cell motility events, in particular, lamellipodium extension and chemotaxis toward an EGF gradient. Invadopodium formation on glass requires N-WASP and cortactin but not microtubules. In a gradient of EGF more invadopodia form on the side of the cells facing the source of EGF. In addition, depletion of N-WASP or cortactin, which blocks invadopodium fromation, inhibits chemotaxis of cells towards EGF. This appears to be a localized defect in chemotaxis since depletion of N-WASP or cortactin via siRNA had no effect on lamellipodium protrusion or barbed end generation at the lamellipodiums leading edge. Since chemotaxis to EGF by breast tumor cells is involved in metastasis, inhibiting N-WASP activity in breast tumor cells might prevent metastasis of tumor cells while not affecting chemotaxis-dependent innate immunity which depends on WASp function in macrophages.


Journal of Cell Science | 2007

The distinct roles of Ras and Rac in PI 3-kinase-dependent protrusion during EGF-stimulated cell migration.

Shu Chin Yip; Mirvat El-Sibai; Salvatore J. Coniglio; Ghassan Mouneimne; Robert J. Eddy; Beth E. Drees; Paul O. Neilsen; Sumanta Goswami; Marc Symons; John Condeelis; Jonathan M. Backer

Cell migration involves the localized extension of actin-rich protrusions, a process that requires Class I phosphoinositide 3-kinases (PI 3-kinases). Both Rac and Ras have been shown to regulate actin polymerization and activate PI 3-kinase. However, the coordination of Rac, Ras and PI 3-kinase activation during epidermal growth factor (EGF)-stimulated protrusion has not been analyzed. We examined PI 3-kinase-dependent protrusion in MTLn3 rat adenocarcinoma cells. EGF-stimulated phosphatidyl-inositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3] levels showed a rapid and persistent response, as PI 3-kinase activity remained elevated up to 3 minutes. The activation kinetics of Ras, but not Rac, coincided with those of leading-edge PtdIns(3,4,5)P3 production. Small interfering RNA (siRNA) knockdown of K-Ras but not Rac1 abolished PtdIns(3,4,5)P3 production at the leading edge and inhibited EGF-stimulated protrusion. However, Rac1 knockdown did inhibit cell migration, because of the inhibition of focal adhesion formation in Rac1 siRNA-treated cells. Our data show that in EGF-stimulated MTLn3 carcinoma cells, Ras is required for both PtdIns(3,4,5)P3 production and lamellipod extension, whereas Rac1 is required for formation of adhesive structures. These data suggest an unappreciated role for Ras during protrusion, and a crucial role for Rac in the stabilization of protrusions required for cell motility.


Embo Molecular Medicine | 2012

DIAPH3 governs the cellular transition to the amoeboid tumour phenotype

Martin H. Hager; Samantha Morley; Diane R. Bielenberg; Sizhen Gao; Matteo Morello; Ilona N. Holcomb; Wennuan Liu; Ghassan Mouneimne; Francesca Demichelis; Jayoung Kim; Keith R. Solomon; Rosalyn M. Adam; William B. Isaacs; Henry N. Higgs; Robert L. Vessella; Dolores Di Vizio; Michael R. Freeman

Therapies for most malignancies are generally ineffective once metastasis occurs. While tumour cells migrate through tissues using diverse strategies, the signalling networks controlling such behaviours in human tumours are poorly understood. Here we define a role for the Diaphanous‐related formin‐3 (DIAPH3) as a non‐canonical regulator of metastasis that restrains conversion to amoeboid cell behaviour in multiple cancer types. The DIAPH3 locus is close to RB1, within a narrow consensus region of deletion on chromosome 13q in prostate, breast and hepatocellular carcinomas. DIAPH3 silencing in human carcinoma cells destabilized microtubules and induced defective endocytic trafficking, endosomal accumulation of EGFR, and hyperactivation of EGFR/MEK/ERK signalling. Silencing also evoked amoeboid properties, increased invasion and promoted metastasis in mice. In human tumours, DIAPH3 down‐regulation was associated with aggressive or metastatic disease. DIAPH3‐silenced cells were sensitive to MEK inhibition, but showed reduced sensitivity to EGFR inhibition. These findings have implications for understanding mechanisms of metastasis, and suggest that identifying patients with chromosomal deletions at DIAPH3 may have prognostic value.


Journal of Cell Science | 2007

ZBP1 enhances cell polarity and reduces chemotaxis

Kyle Lapidus; Jeffrey Wyckoff; Ghassan Mouneimne; Mike Lorenz; Lillian Soon; John Condeelis; Robert H. Singer

The interaction of β-actin mRNA with zipcode-binding protein 1 (ZBP1) is necessary for its localization to the lamellipod of fibroblasts and plays a crucial role in cell polarity and motility. Recently, we have shown that low ZBP1 levels correlate with tumor-cell invasion and metastasis. In order to establish a cause and effect relationship, we expressed ZBP1 in a metastatic rat mammary adenocarcinoma cell line (MTLn3) that has low endogenous ZBP1 levels and delocalized β-actin mRNA. This leads to localization of β-actin mRNA, and eventually reduces the chemotactic potential of the cells as well as their ability to move and orient towards vessels in tumors. To determine how ZBP1 leads to these two apparently contradictory aspects of cell behavior – increased cell motility but decreased chemotaxis – we examined cell motility in detail, both in cell culture and in vivo in tumors. We found that ZBP1 expression resulted in tumor cells with a stable polarized phenotype, and reduced their ability to move in response to a gradient in culture. To connect these results on cultured cells to the reduced metastatic ability of these cells, we used multiphoton imaging in vivo to examine tumor cell behavior in primary tumors. We found that ZBP1 expression actually reduced tumor cell motility and chemotaxis, presumably mediating their decreased metastatic potential by reducing their ability to respond to signals necessary for invasion.


Scientific Reports | 2016

Breast Cancer Cell Invasion into a Three Dimensional Tumor-Stroma Microenvironment

Danh Truong; Julieann Puleo; Alison Llave; Ghassan Mouneimne; Roger D. Kamm; Mehdi Nikkhah

In this study, to model 3D chemotactic tumor-stroma invasion in vitro, we developed an innovative microfluidic chip allowing side-by-side positioning of 3D hydrogel-based matrices. We were able to (1) create a dual matrix architecture that extended in a continuous manner, thus allowing invasion from one 3D matrix to another, and (2) establish distinct regions of tumor and stroma cell/ECM compositions, with a clearly demarcated tumor invasion front, thus allowing us to quantitatively analyze progression of cancer cells into the stroma at a tissue or single-cell level. We showed significantly enhanced cancer cell invasion in response to a transient gradient of epidermal growth factor (EGF). 3D tracking at the single-cell level displayed increased migration speed and persistence. Subsequently, we analyzed changes in expression of EGF receptors, cell aspect ratio, and protrusive activity. These findings show the unique ability of our model to quantitatively analyze 3D chemotactic invasion, both globally by tracking the progression of the invasion front, and at the single-cell level by examining changes in cellular behavior and morphology using high-resolution imaging. Taken together, we have shown a novel model recapitulating 3D tumor-stroma interactions for studies of real-time cell invasion and morphological changes within a single platform.


Genes & Development | 2011

Psidin, a conserved protein that regulates protrusion dynamics and cell migration

Ji Hoon Kim; Aeri Cho; Hongyan Yin; Dorothy A. Schafer; Ghassan Mouneimne; Kaylene J. Simpson; Kim Vy Nguyen; Joan S. Brugge; Denise J. Montell

Dynamic assembly and disassembly of actin filaments is a major driving force for cell movements. Border cells in the Drosophila ovary provide a simple and genetically tractable model to study the mechanisms regulating cell migration. To identify new genes that regulate cell movement in vivo, we screened lethal mutations on chromosome 3R for defects in border cell migration and identified two alleles of the gene psidin (psid). In vitro, purified Psid protein bound F-actin and inhibited the interaction of tropomyosin with F-actin. In vivo, psid mutations exhibited genetic interactions with the genes encoding tropomyosin and cofilin. Border cells overexpressing Psid together with GFP-actin exhibited altered protrusion/retraction dynamics. Psid knockdown in cultured S2 cells reduced, and Psid overexpression enhanced, lamellipodial dynamics. Knockdown of the human homolog of Psid reduced the speed and directionality of migration in wounded MCF10A breast epithelial monolayers, whereas overexpression of the protein increased migration speed and altered protrusion dynamics in EGF-stimulated cells. These results indicate that Psid is an actin regulatory protein that plays a conserved role in protrusion dynamics and cell migration.


Pain | 2000

Functional interplay between gelatinases and hyperalgesia in endotoxin-induced localized inflammatory pain.

Rabih S. Talhouk; L Hajjar; R Abou-Gergi; C.J Simaa'n; Ghassan Mouneimne; Nayef E. Saadé; Bared Safieh-Garabedian

Abstract The role of ECM‐degrading proteinases in normal developmental processes and in pathological conditions is extensively studied. However, few reports describe the role ECM‐degrading proteinases play in modulating hyperalgesia. The goal of this study is to describe the regulation of gelatinases during endotoxin mediated local inflammation, induced by intra plantar endotoxin (ET; 1.25 &mgr;g/50 &mgr;l) injection in Balb/c mice, and to correlate that with hyperalgesia. ET injections induced hyperalgesia, as determined by hot plate and paw pressure tests, which peaked by 24 h and recovered by 48 h post‐injection. Contralateral paw of ET injected mice and saline injected paws in control mice elicited no hyperalgesia. Zymography showed that ET and saline injected paws elicited increased gelatinase activity by 9 h after injection. However, only the former maintained high levels of expression of a 90 kD gelatinase up to at least 96 h post ET injection, while in the latter gelatinase expression was down regulated by 24 h. Interestingly, the 90‐kD gelatinase was upregulated in the contralateral paw of the ET‐injected mice beyond 48 h post injection. Saline injection in that paw, during a time when gelatinases are upregulated, induced hyperalgesia. Intraperitoneal injection of either ZnCl2 (100 &mgr;M), thymulin (5 &mgr;g/100 &mgr;l), or morphine (2 mg/kg/100 &mgr;l) reversed the ET‐induced hyperalgesia and suppressed gelatinase activity. Furthermore, intraperitoneal injection of MPI, an ECM‐degrading proteinase inhibitor, reversed ET induced hyperalgesia. Taken together, the above suggests that a functional interplay exists between gelatinase upregulation triggered by ET injections and hyperalgesia. The exact mechanism underlying such correlation remains to be determined.

Collaboration


Dive into the Ghassan Mouneimne's collaboration.

Top Co-Authors

Avatar

John Condeelis

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mehdi Nikkhah

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Robert J. Eddy

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jeffrey Wyckoff

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danh Truong

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Vera DesMarais

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge