Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Condeelis is active.

Publication


Featured researches published by John Condeelis.


Cell | 2006

Macrophages: Obligate Partners for Tumor Cell Migration, Invasion, and Metastasis

John Condeelis; Jeffrey W. Pollard

Macrophages within the tumor microenvironment facilitate angiogenesis and extracellular-matrix breakdown and remodeling and promote tumor cell motility. Recent studies reveal that direct communication between macrophages and tumor cells leads to invasion and egress of tumor cells into the blood vessels (intravasation). Thus, macrophages are at the center of the invasion microenvironment and are an important drug target for cancer therapy.


Cancer Research | 2004

A Paracrine Loop between Tumor Cells and Macrophages Is Required for Tumor Cell Migration in Mammary Tumors

Jeffrey Wyckoff; Weigang Wang; Elaine Y. Lin; Yarong Wang; Fiona J. Pixley; E. Richard Stanley; Thomas Graf; Jeffrey W. Pollard; Jeffrey E. Segall; John Condeelis

Invasion of tumor cells into the surrounding connective tissue and blood vessels is a key step in the metastatic spread of breast tumors. Although the presence of macrophages in primary tumors is associated with increased metastatic potential, the mechanistic basis for this observation is unknown. Using a chemotaxis-based in vivo invasion assay and multiphoton-based intravital imaging, we show that the interaction between macrophages and tumor cells facilitates the migration of carcinoma cells in the primary tumor. Gradients of either epidermal growth factor (EGF) or colony-stimulating factor 1 (CSF-1) stimulate collection into microneedles of tumor cells and macrophages even though tumor cells express only EGF receptor and macrophages express only CSF-1 receptor. Intravital imaging shows that macrophages and tumor cells migrate toward microneedles containing either EGF or CSF-1. Inhibition of either CSF-1– or EGF-stimulated signaling reduces the migration of both cell types. This work provides the first direct evidence for a synergistic interaction between macrophages and tumor cells during cell migration in vivo and indicates a mechanism for how macrophages may contribute to metastasis.


Nature Reviews Molecular Cell Biology | 2001

Filamins as integrators of cell mechanics and signalling

Thomas P. Stossel; John Condeelis; Lynn Cooley; John H. Hartwig; Angelika A. Noegel; Michael Schleicher; Sandor S. Shapiro

Filamins are large actin-binding proteins that stabilize delicate three-dimensional actin webs and link them to cellular membranes. They integrate cellular architectural and signalling functions and are essential for fetal development and cell locomotion. Here, we describe the history, structure and function of this group of proteins.


Nature Reviews Cancer | 2003

Intravital imaging of cell movement in tumours

John Condeelis; Jeffrey E. Segall

Metastasis is the cause of death for patients with many types of cancer, but the process of tumour cell dissemination is poorly understood. As primary tumours are three-dimensional, departure of cells from primary tumours has been difficult to study. Multiphoton microscopy has been developed for in vivo imaging and, using this technique, we are beginning to understand how invasive tumour cells move.


Cancer Research | 2007

Direct visualization of macrophage assisted tumor cell intravasation in mammary tumors

Jeffrey Wyckoff; Yarong Wang; Elaine Y. Lin; Jiu Feng Li; Sumanta Goswami; E. Richard Stanley; Jeffrey E. Segall; Jeffrey W. Pollard; John Condeelis

Although the presence of macrophages in tumors has been correlated with poor prognosis, until now there was no direct observation of how macrophages are involved in hematogenous metastasis. In this study, we use multiphoton microscopy to show, for the first time, that tumor cell intravasation occurs in association with perivascular macrophages in mammary tumors. Furthermore, we show that perivascular macrophages of the mammary tumor are associated with tumor cell intravasation in the absence of local angiogenesis. These results show that the interaction between macrophages and tumor cells lying in close proximity defines a microenvironment that is directly involved in the intravasation of cancer cells in mammary tumors.


Cancer Research | 2005

Macrophages Promote the Invasion of Breast Carcinoma Cells via a Colony-Stimulating Factor-1/Epidermal Growth Factor Paracrine Loop

Sumanta Goswami; Erik Sahai; Jeffrey Wyckoff; Michael Cammer; Dianne Cox; Fiona J. Pixley; E. Richard Stanley; Jeffrey E. Segall; John Condeelis

Previous studies have shown that macrophages and tumor cells are comigratory in mammary tumors and that these cell types are mutually dependent for invasion. Here we show that macrophages and tumor cells are necessary and sufficient for comigration and invasion into collagen I and that this process involves a paracrine loop. Macrophages express epidermal growth factor (EGF), which promotes the formation of elongated protrusions and cell invasion by carcinoma cells. Colony stimulating factor 1 (CSF-1) produced by carcinoma cells promotes the expression of EGF by macrophages. In addition, EGF promotes the expression of CSF-1 by carcinoma cells thereby generating a positive feedback loop. Disruption of this loop by blockade of either EGF receptor or CSF-1 receptor signaling is sufficient to inhibit both macrophage and tumor cell migration and invasion.


Journal of Cell Biology | 2005

Molecular mechanisms of invadopodium formation: the role of the N-WASP–Arp2/3 complex pathway and cofilin

Hideki Yamaguchi; Mike Lorenz; Stephan J. Kempiak; Corina Sarmiento; Salvatore J. Coniglio; Marc Symons; Jeffrey E. Segall; Robert J. Eddy; Hiroaki Miki; Tadaomi Takenawa; John Condeelis

Invadopodia are actin-rich membrane protrusions with a matrix degradation activity formed by invasive cancer cells. We have studied the molecular mechanisms of invadopodium formation in metastatic carcinoma cells. Epidermal growth factor (EGF) receptor kinase inhibitors blocked invadopodium formation in the presence of serum, and EGF stimulation of serum-starved cells induced invadopodium formation. RNA interference and dominant-negative mutant expression analyses revealed that neural WASP (N-WASP), Arp2/3 complex, and their upstream regulators, Nck1, Cdc42, and WIP, are necessary for invadopodium formation. Time-lapse analysis revealed that invadopodia are formed de novo at the cell periphery and their lifetime varies from minutes to several hours. Invadopodia with short lifetimes are motile, whereas long-lived invadopodia tend to be stationary. Interestingly, suppression of cofilin expression by RNA interference inhibited the formation of long-lived invadopodia, resulting in formation of only short-lived invadopodia with less matrix degradation activity. These results indicate that EGF receptor signaling regulates invadopodium formation through the N-WASP–Arp2/3 pathway and cofilin is necessary for the stabilization and maturation of invadopodia.


Nature | 2005

Spatial regulation of β-actin translation by Src-dependent phosphorylation of ZBP1

Stefan Hüttelmaier; Daniel Zenklusen; Marcell Lederer; Jason B. Dictenberg; Mike Lorenz; Xiuhua Meng; Gary J. Bassell; John Condeelis; Robert H. Singer

Localization of β-actin messenger RNA to sites of active actin polymerization modulates cell migration during embryogenesis, differentiation and possibly carcinogenesis. This localization requires the oncofetal protein ZBP1 (Zipcode binding protein 1), which binds to a conserved 54-nucleotide element in the 3′-untranslated region of the β-actin mRNA known as the ‘zipcode’. ZBP1 promotes translocation of the β-actin transcript to actin-rich protrusions in primary fibroblasts and neurons. It is not known how the ZBP1–RNA complex achieves asymmetric protein sorting by localizing β-actin mRNA. Here we show that chicken ZBP1 modulates the translation of β-actin mRNA. ZBP1 associates with the β-actin transcript in the nucleus and prevents premature translation in the cytoplasm by blocking translation initiation. Translation only occurs when the ZBP1–RNA complex reaches its destination at the periphery of the cell. At the endpoint of mRNA transport, the protein kinase Src promotes translation by phosphorylating a key tyrosine residue in ZBP1 that is required for binding to RNA. These sequential events provide both temporal and spatial control over β-actin mRNA translation, which is important for cell migration and neurite outgrowth.


Nature Reviews Cancer | 2011

Chemotaxis in cancer

Evanthia T. Roussos; John Condeelis; Antonia Patsialou

Chemotaxis of tumour cells and stromal cells in the surrounding microenvironment is an essential component of tumour dissemination during progression and metastasis. This Review summarizes how chemotaxis directs the different behaviours of tumour cells and stromal cells in vivo, how molecular pathways regulate chemotaxis in tumour cells and how chemotaxis choreographs cell behaviour to shape the tumour microenvironment and to determine metastatic spread. The central importance of chemotaxis in cancer progression is highlighted by discussion of the use of chemotaxis as a prognostic marker, a treatment end point and a target of therapeutic intervention.


Cancer Research | 2004

Identification and Testing of a Gene Expression Signature of Invasive Carcinoma Cells within Primary Mammary Tumors

Weigang Wang; Sumanta Goswami; Kyle Lapidus; Amber L. Wells; Jeffrey Wyckoff; Erik Sahai; Robert H. Singer; Jeffrey E. Segall; John Condeelis

We subjected cells collected using an in vivo invasion assay to cDNA microarray analysis to identify the gene expression profile of invasive carcinoma cells in primary mammary tumors. Expression of genes involved in cell division, survival, and cell motility were most dramatically changed in invasive cells indicating a population that is neither dividing nor apoptotic but intensely motile. In particular, the genes coding for the minimum motility machine that regulates β-actin polymerization at the leading edge and, therefore, the motility and chemotaxis of carcinoma cells, were dramatically up-regulated. However, ZBP1, which restricts the localization of β-actin, the substrate for the minimum motility machine, was down-regulated. This pattern of expression implicated ZBP1 as a suppressor of invasion. Reexpression of ZBP1 in metastatic cells with otherwise low levels of ZBP1 reestablished normal patterns of β-actin mRNA targeting and suppressed chemotaxis and invasion in primary tumors. ZBP1 reexpression also inhibited metastasis from tumors. These experiments support the involvement in metastasis of the pathways identified in invasive cells, which are regulated by ZBP1.

Collaboration


Dive into the John Condeelis's collaboration.

Top Co-Authors

Avatar

Jeffrey E. Segall

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yarong Wang

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jeffrey Wyckoff

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

David Entenberg

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Maja H. Oktay

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Joan G. Jones

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert J. Eddy

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Frank B. Gertler

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ved P. Sharma

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge