Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey Wyckoff is active.

Publication


Featured researches published by Jeffrey Wyckoff.


Cancer Research | 2004

A Paracrine Loop between Tumor Cells and Macrophages Is Required for Tumor Cell Migration in Mammary Tumors

Jeffrey Wyckoff; Weigang Wang; Elaine Y. Lin; Yarong Wang; Fiona J. Pixley; E. Richard Stanley; Thomas Graf; Jeffrey W. Pollard; Jeffrey E. Segall; John Condeelis

Invasion of tumor cells into the surrounding connective tissue and blood vessels is a key step in the metastatic spread of breast tumors. Although the presence of macrophages in primary tumors is associated with increased metastatic potential, the mechanistic basis for this observation is unknown. Using a chemotaxis-based in vivo invasion assay and multiphoton-based intravital imaging, we show that the interaction between macrophages and tumor cells facilitates the migration of carcinoma cells in the primary tumor. Gradients of either epidermal growth factor (EGF) or colony-stimulating factor 1 (CSF-1) stimulate collection into microneedles of tumor cells and macrophages even though tumor cells express only EGF receptor and macrophages express only CSF-1 receptor. Intravital imaging shows that macrophages and tumor cells migrate toward microneedles containing either EGF or CSF-1. Inhibition of either CSF-1– or EGF-stimulated signaling reduces the migration of both cell types. This work provides the first direct evidence for a synergistic interaction between macrophages and tumor cells during cell migration in vivo and indicates a mechanism for how macrophages may contribute to metastasis.


Cancer Research | 2007

Direct visualization of macrophage assisted tumor cell intravasation in mammary tumors

Jeffrey Wyckoff; Yarong Wang; Elaine Y. Lin; Jiu Feng Li; Sumanta Goswami; E. Richard Stanley; Jeffrey E. Segall; Jeffrey W. Pollard; John Condeelis

Although the presence of macrophages in tumors has been correlated with poor prognosis, until now there was no direct observation of how macrophages are involved in hematogenous metastasis. In this study, we use multiphoton microscopy to show, for the first time, that tumor cell intravasation occurs in association with perivascular macrophages in mammary tumors. Furthermore, we show that perivascular macrophages of the mammary tumor are associated with tumor cell intravasation in the absence of local angiogenesis. These results show that the interaction between macrophages and tumor cells lying in close proximity defines a microenvironment that is directly involved in the intravasation of cancer cells in mammary tumors.


Cancer Research | 2005

Macrophages Promote the Invasion of Breast Carcinoma Cells via a Colony-Stimulating Factor-1/Epidermal Growth Factor Paracrine Loop

Sumanta Goswami; Erik Sahai; Jeffrey Wyckoff; Michael Cammer; Dianne Cox; Fiona J. Pixley; E. Richard Stanley; Jeffrey E. Segall; John Condeelis

Previous studies have shown that macrophages and tumor cells are comigratory in mammary tumors and that these cell types are mutually dependent for invasion. Here we show that macrophages and tumor cells are necessary and sufficient for comigration and invasion into collagen I and that this process involves a paracrine loop. Macrophages express epidermal growth factor (EGF), which promotes the formation of elongated protrusions and cell invasion by carcinoma cells. Colony stimulating factor 1 (CSF-1) produced by carcinoma cells promotes the expression of EGF by macrophages. In addition, EGF promotes the expression of CSF-1 by carcinoma cells thereby generating a positive feedback loop. Disruption of this loop by blockade of either EGF receptor or CSF-1 receptor signaling is sufficient to inhibit both macrophage and tumor cell migration and invasion.


Cancer Research | 2004

Identification and Testing of a Gene Expression Signature of Invasive Carcinoma Cells within Primary Mammary Tumors

Weigang Wang; Sumanta Goswami; Kyle Lapidus; Amber L. Wells; Jeffrey Wyckoff; Erik Sahai; Robert H. Singer; Jeffrey E. Segall; John Condeelis

We subjected cells collected using an in vivo invasion assay to cDNA microarray analysis to identify the gene expression profile of invasive carcinoma cells in primary mammary tumors. Expression of genes involved in cell division, survival, and cell motility were most dramatically changed in invasive cells indicating a population that is neither dividing nor apoptotic but intensely motile. In particular, the genes coding for the minimum motility machine that regulates β-actin polymerization at the leading edge and, therefore, the motility and chemotaxis of carcinoma cells, were dramatically up-regulated. However, ZBP1, which restricts the localization of β-actin, the substrate for the minimum motility machine, was down-regulated. This pattern of expression implicated ZBP1 as a suppressor of invasion. Reexpression of ZBP1 in metastatic cells with otherwise low levels of ZBP1 reestablished normal patterns of β-actin mRNA targeting and suppressed chemotaxis and invasion in primary tumors. ZBP1 reexpression also inhibited metastasis from tumors. These experiments support the involvement in metastasis of the pathways identified in invasive cells, which are regulated by ZBP1.


Current Biology | 2006

ROCK- and Myosin-Dependent Matrix Deformation Enables Protease-Independent Tumor-Cell Invasion In Vivo

Jeffrey Wyckoff; Sophie Pinner; Steve Gschmeissner; John Condeelis; Erik Sahai

Tumor cells invading three-dimensional matrices need to remodel the extracellular matrix (ECM) in their path. Many studies have focused on the role of extracellular proteases; however, cells with amoeboid or rounded morphologies are able to invade even when these enzymes are inhibited. Here, we describe the mechanism by which cells move through a dense ECM without proteolysis. Amoeboid tumor cells generate sufficient actomyosin force to deform collagen fibers and are able to push through the ECM. Force generation is elevated in metastatic MTLn3E cells, and this correlates with increased invasion and altered myosin light chain (MLC) organization. In metastatic cells, MLC is organized perpendicularly to the direction of movement behind the invading edge. Both the organization of MLC and force generation are dependent upon ROCK function. We demonstrate that ROCK regulates the phosphorylation of MLC just behind the invading margin of the cell. Imaging of live tumors shows that MLC is organized in a similar ROCK-dependent fashion in vivo and that inhibition of ROCK but not matrix-metalloproteases reduces cancer cell motility in vivo.


Nature Methods | 2008

Intravital imaging of metastatic behavior through a mammary imaging window

Dmitriy Kedrin; Bojana Gligorijevic; Jeffrey Wyckoff; Vladislav V. Verkhusha; John Condeelis; Jeffrey E. Segall; Jacco van Rheenen

We report a technique to evaluate the same tumor microenvironment over multiple intravital imaging sessions in living mice. We optically marked individual tumor cells expressing photoswitchable proteins in an orthotopic mammary carcinoma and followed them for extended periods through a mammary imaging window. We found that two distinct microenvironments in the same orthotopic mammary tumor affected differently the invasion and intravasation of tumor cells.


Nature Materials | 2015

Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates

Omid Veiseh; Joshua C. Doloff; Minglin Ma; Arturo Vegas; Hok Hei Tam; Andrew Bader; Jie Li; Erin Langan; Jeffrey Wyckoff; Whitney S. Loo; Siddharth Jhunjhunwala; Alan Chiu; Sean Siebert; Katherine Tang; Jennifer Hollister-Lock; Stephanie Aresta-Dasilva; Matthew A. Bochenek; Joshua E. Mendoza-Elias; Yong Wang; Merigeng Qi; Danya M. Lavin; Michael Chen; Nimit Dholakia; Raj Thakrar; Igor Lacík; Gordon C. Weir; Jose Oberholzer; Dale L. Greiner; Robert Langer; Daniel G. Anderson

The efficacy of implanted biomedical devices is often compromised by host recognition and subsequent foreign body responses. Here, we demonstrate the role of the geometry of implanted materials on their biocompatibility in vivo. In rodent and non-human primate animal models, implanted spheres 1.5 mm and above in diameter across a broad spectrum of materials, including hydrogels, ceramics, metals, and plastics, significantly abrogated foreign body reactions and fibrosis when compared to smaller spheres. We also show that for encapsulated rat pancreatic islet cells transplanted into streptozotocin-treated diabetic C57BL/6 mice, islets prepared in 1.5 mm alginate capsules were able to restore blood-glucose control for up to 180 days, a period more than 5-fold longer than for transplanted grafts encapsulated within conventionally sized 0.5-mm alginate capsules. Our findings suggest that the in vivo biocompatibility of biomedical devices can be significantly improved by simply tuning their spherical dimensions.


Nature | 2014

Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis

Laura Bonapace; Marie-May Coissieux; Jeffrey Wyckoff; Kirsten D. Mertz; Zsuzsanna Varga; Tobias Junt; Mohamed Bentires-Alj

Secretion of C–C chemokine ligand 2 (CCL2) by mammary tumours recruits CCR2-expressing inflammatory monocytes to primary tumours and metastatic sites, and CCL2 neutralization in mice inhibits metastasis by retaining monocytes in the bone marrow. Here we report a paradoxical effect of CCL2 in four syngeneic mouse models of metastatic breast cancer. Surprisingly, interruption of CCL2 inhibition leads to an overshoot of metastases and accelerates death. This is the result of monocyte release from the bone marrow and enhancement of cancer cell mobilization from the primary tumour, as well as blood vessel formation and increased proliferation of metastatic cells in the lungs in an interleukin (IL)-6- and vascular endothelial growth factor (VEGF)-A-dependent manner. Notably, inhibition of CCL2 and IL-6 markedly reduced metastases and increased survival of the animals. CCL2 has been implicated in various neoplasias and adopted as a therapeutic target. However, our results call for caution when considering anti-CCL2 agents as monotherapy in metastatic disease and highlight the tumour microenvironment as a critical determinant of successful anti-metastatic therapy.


Cancer Research | 2006

Epidermal growth factor receptor overexpression results in increased tumor cell motility in vivo coordinately with enhanced intravasation and metastasis

Chengsen Xue; Jeffrey Wyckoff; Fubo Liang; Mazen Sidani; Stefania Violini; Kun Lin Tsai; Zhong Yin Zhang; Erik Sahai; John Condeelis; Jeffrey E. Segall

Although overexpression of the epidermal growth factor receptor (EGFR; ErbB1) has been correlated with poor prognosis in breast and other cancers, clinical trials of ErbB1 inhibitors have shown limited efficacy in inhibiting tumor proliferation. To evaluate other possible roles of ErbB1 in tumor malignancy besides proliferation, we have developed a series of tools for analysis of intravasation. Overexpression of ErbB1 in MTLn3 mammary adenocarcinoma cells results in increased intravasation and lung metastasis from tumors formed by injection of cells in the mammary fat pad. However, increased ErbB1 expression has no effect on primary tumor growth and lung seeding efficiency of cells injected i.v. Chemotactic responses to low concentrations of EGF in vitro and cell motility in vivo in the primary tumor measured using intravital imaging are significantly increased by ErbB1 overexpression. The increased cell motility is restricted to ErbB1-overexpressing cells in tumors containing mixtures of cells expressing different ErbB1 levels, arguing for a cell-autonomous effect of increased ErbB1 expression rather than alteration of the tumor microenvironment. In summary, we propose that ErbB1 overexpression makes more significant contributions to intravasation than growth in some tumors and present a novel model for studying ErbB1 contributions to tumor metastasis via chemotaxis and intravasation.


Cancer Research | 2009

Invasion of Human Breast Cancer Cells In vivo Requires Both Paracrine and Autocrine Loops Involving the Colony-Stimulating Factor-1 Receptor

Antonia Patsialou; Jeffrey Wyckoff; Yarong Wang; Sumanta Goswami; E. Richard Stanley; John Condeelis

Colony-stimulating factor-1 (CSF-1) and its receptor (CSF-1R) have been implicated in the pathogenesis and progression of various types of cancer, including breast cancer. This is based on high levels of circulating CSF-1 in patient sera with aggressive disease and increased CSF-1R staining in the tumor tissues. However, there have been no direct in vivo studies to determine whether a CSF-1 autocrine signaling loop functions in human breast cancer cells in vivo and whether it contributes to invasion. Recently, in mouse and rat models, it has been shown that invasion and metastasis are driven by an epidermal growth factor (EGF)/CSF-1 paracrine loop between tumor cells and host macrophages. In this macrophage-dependent invasion, tumor cells secrete CSF-1 and sense EGF, whereas the macrophages secrete EGF and sense CSF-1. Here, we test the hypothesis that in human breast tumors, the expression of both the CSF-1 ligand and its receptor in tumor cells leads to a CSF-1/CSF-1R autocrine loop which contributes to the aggressive phenotype of human breast tumors. Using MDA-MB-231 cell-derived mammary tumors in severe combined immunodeficiency mice, we show here for the first time in vivo that invasion in a human mammary tumor model is dependent on both paracrine signaling with host macrophages as well as autocrine signaling involving the tumor cells themselves. In particular, we show that the autocrine contribution to invasion is specifically amplified in vivo through a tumor microenvironment-induced upregulation of CSF-1R expression via the transforming growth factor-beta1.

Collaboration


Dive into the Jeffrey Wyckoff's collaboration.

Top Co-Authors

Avatar

John Condeelis

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jeffrey E. Segall

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yarong Wang

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dianne Cox

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

E. Richard Stanley

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

David Entenberg

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge