Ghazia Asif
Emory University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ghazia Asif.
Nutrition and Cancer | 2013
Meera Brahmbhatt; Sushma R. Gundala; Ghazia Asif; Shahab A. Shamsi; Ritu Aneja
Dietary phytochemicals offer nontoxic therapeutic management as well as chemopreventive intervention for slow-growing prostate cancers. However, the limited success of several single-agent clinical trials suggest a paradigm shift that the health benefits of fruits and vegetables are not ascribable to individual phytochemicals, rather may be ascribed to synergistic interactions among them. We recently reported growth-inhibiting and apoptosis-inducing properties of ginger extract (GE) in in vitro and in vivo prostate cancer models. Nevertheless, the nature of interactions among the constituent ginger biophenolics, viz. 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogoal, remains elusive. Here we show antiproliferative efficacy of the most-active GE biophenolics as single-agents and in binary combinations, and investigate the nature of their interactions using the Chou-Talalay combination index (CI) method. Our data demonstrate that binary combinations of ginger phytochemicals synergistically inhibit proliferation of PC-3 cells with CI values ranging from 0.03 to 0.88. To appreciate synergy among phytochemicals present in GE, the natural abundance of ginger biophenolics was quantitated using LC-UV/MS. Interestingly, combining GE with its constituents (in particular, 6-gingerol) resulted in significant augmentation of GEs antiproliferative activity. These data generate compelling grounds for further preclinical evaluation of GE alone and in combination with individual ginger biophenols for prostate cancer management.
Clinical Chemistry | 2013
Baoyun Xia; Ghazia Asif; Leonard Arthur; Muhammad A. Pervaiz; Xueli Li; Renpeng Liu; Richard D. Cummings; Miao He
BACKGROUND There are 45 known genetic diseases that impair the lysosomal degradation of macromolecules. The loss of a single lysosomal hydrolase leads to the accumulation of its undegraded substrates in tissues and increases of related glycoconjugates in urine, some of which can be detected by screening of free oligosaccharides (FOS) in urine. Traditional 1-dimensional TLC for urine oligosaccharide analysis has limited analytical specificity and sensitivity. We developed fast and robust urinary FOS and glycoaminoacid analyses by MALDI-time-of-flight/time-of-flight (MALDI-TOF/TOF) mass spectrometry for the diagnosis of oligosaccharidoses and other lysosomal storage diseases. METHODS The FOS in urine equivalent to 0.09 mg creatinine were purified through sequential passage over a Sep-Pak C18 column and a carbograph column and were then permethylated. MALDI-TOF/TOF was used to analyze the permethylated FOS. We studied urine samples from individuals in 7 different age groups ranging from 0-1 months to ≥ 17 years as well as urine from known patients with different lysosomal storage diseases. RESULTS We identified diagnostic urinary FOS patterns for α-mannosidosis, galactosialidosis, mucolipidosis type II/III, sialidosis, α-fucosidosis, aspartylglucosaminuria (AGU), Pompe disease, Gaucher disease, and GM1 and GM2 gangliosidosis. Interestingly, the increase in urinary FOS characteristic of lysosomal storage diseases relative to normal FOS appeared to correlate with the disease severity. CONCLUSIONS The analysis of urinary FOS by MALDI-TOF/TOF is a powerful tool for first-tier screening of oligosaccharidoses and lysosomal storage diseases.
Antimicrobial Agents and Chemotherapy | 2008
Selwyn J. Hurwitz; Ghazia Asif; Nancy M. Kivel; Raymond F. Schinazi
ABSTRACT In vitro selection studies and data from large genotype databases from clinical studies have demonstrated that tenofovir disoproxil fumarate and abacavir sulfate select for the K65R mutation in the human immunodeficiency virus type 1 polymerase region. Furthermore, other novel non-thymine nucleoside reverse transcriptase (RT) inhibitors also select for this mutation in vitro. Studies performed in vitro and in humans suggest that viruses containing the K65R mutation remained susceptible to zidovudine (ZDV) and other thymine nucleoside antiretroviral agents. Therefore, ZDV could be coformulated with these agents as a “resistance repellent” agent for the K65R mutation. The approved ZDV oral dose is 300 mg twice a day (b.i.d.) and is commonly associated with bone marrow toxicity thought to be secondary to ZDV-5′-monophosphate (ZDV-MP) accumulation. A simulation study was performed in silico to optimize the ZDV dose for b.i.d. administration with K65R-selecting antiretroviral agents in virtual subjects using the population pharmacokinetic and cellular enzyme kinetic parameters of ZDV. These simulations predicted that a reduction in the ZDV dose from 300 to 200 mg b.i.d. should produce similar amounts of ZDV-5′-triphosphate (ZDV-TP) associated with antiviral efficacy (>97% overlap) and reduced plasma ZDV and cellular amounts of ZDV-MP associated with toxicity. The simulations also predicted reduced peak and trough amounts of cellular ZDV-TP after treatment with 600 mg ZDV once a day (q.d.) rather than 300 or 200 mg ZDV b.i.d., indicating that q.d. dosing with ZDV should be avoided. These in silico predictions suggest that 200 mg ZDV b.i.d. is an efficacious and safe dose that could delay the emergence of the K65R mutation.
Antimicrobial Agents and Chemotherapy | 2007
Ghazia Asif; Selwyn J. Hurwitz; Junxing Shi; Brenda I. Hernandez-Santiago; Raymond F. Schinazi
ABSTRACT β-d-2′-Deoxy-2′-fluoro-2′-C-methylcytidine (PSI-6130) is an effective inhibitor of hepatitis C virus (HCV) replication in vitro. The purpose of this study was to evaluate the single-dose pharmacokinetics of PSΙ-6130 in rhesus monkeys following intravenous (i.v.) and oral administration. Noncompartmental analysis of the serum data obtained following oral and i.v. administration was performed. Pharmacokinetic studies with rhesus monkeys indicated slow and incomplete absorption with a mean absorption time (MAT) of 4.6 h and an oral bioavailability of 24.0% ± 14.3% (mean ± standard deviation), with comparable mean apparent half-lives following i.v. (4.54 ± 3.98 h) and oral (5.64 ± 1.13 h) administrations. The average percentages of the total dose recovered unchanged and in deaminated form in the urine were 32.9% ± 12.6% and 18.9% ± 6.6% (i.v.) and 6.0% ± 3.9% and 3.9% ± 1.0% (oral), respectively. The total bioavailability, taking into account the parent drug and its deaminated metabolite 2′-deoxy-2′-fluoro-2′-C-methyluridine (PSI-6206), was 64% ± 26%. PSI-6130 was present in the cerebrospinal fluid after oral and i.v. dosing. However, no deamination of radiolabeled PSI-6130 was detected after 8 h of incubation in monkey and human whole blood. An N4-modified prodrug of PSI-6130 (PSI-6419) was orally administered to monkeys, but it failed to improve the oral bioavailability of PSI-6130. Further studies are warranted to improve the oral bioavailability and reduce the deamination of PSI-6130 in order to explore the potential of this drug for the treatment of HCV-infected individuals.
Clinical Chemistry | 2015
Wenyue Zhang; Philip James; Bobby G. Ng; Xueli Li; Baoyun Xia; Jiang Rong; Ghazia Asif; Kimiyo Raymond; Melanie A. Jones; Madhuri Hegde; Tongzhong Ju; Richard D. Cummings; Katie Clarkson; Tim Wood; Cornelius F. Boerkoel; Hudson H. Freeze; Miao He
BACKGROUND Primary deficiencies in mannosylation of N-glycans are seen in a majority of patients with congenital disorders of glycosylation (CDG). We report the discovery of a series of novel N-glycans in sera, plasma, and cultured skin fibroblasts from patients with CDG having deficient mannosylation. METHOD We used LC-MS/MS and MALDI-TOF-MS analysis to identify and quantify a novel N-linked tetrasaccharide linked to the protein core, an N-tetrasaccharide (Neu5Acα2,6Galβ1,4-GlcNAcβ1,4GlcNAc) in plasma, serum glycoproteins, and a fibroblast lysate from patients with CDG caused by ALG1 [ALG1 (asparagine-linked glycosylation protein 1), chitobiosyldiphosphodolichol β-mannosyltransferase], PMM2 (phosphomannomutase 2), and MPI (mannose phosphate isomerase). RESULTS Glycoproteins in sera, plasma, or cell lysate from ALG1-CDG, PMM2-CDG, and MPI-CDG patients had substantially more N-tetrasaccharide than unaffected controls. We observed a >80% decline in relative concentrations of the N-tetrasaccharide in MPI-CDG plasma after mannose therapy in 1 patient and in ALG1-CDG fibroblasts in vitro supplemented with mannose. CONCLUSIONS This novel N-tetrasaccharide could serve as a diagnostic marker of ALG1-, PMM2-, or MPI-CDG for screening of these 3 common CDG subtypes that comprise >70% of CDG type I patients. Its quantification by LC-MS/MS may be useful for monitoring therapeutic efficacy of mannose. The discovery of these small N-glycans also indicates the presence of an alternative pathway in N-glycosylation not recognized previously, but its biological significance remains to be studied.
Antiviral Chemistry & Chemotherapy | 2007
Selwyn J. Hurwitz; Ghazia Asif; Raymond F. Schinazi
Current highly active antiretroviral therapy (HAART) requires the use of combinations of three drugs to minimize the early emergence of drug-resistant HIV strains. Therefore, long-term monotherapy data with new agents are unavailable. However, the development of computer models for Monte-Carlotype simulations of antiviral monotherapy, which incorporate HIV infection dynamic distributions from previously studied populations, together with pharmacokinetics and pharmacodynamic parameters of the new agent, could serve as an important tool. The nucleoside lamivudine (3TC) was used as a representative drug to standardize an improved pharmacodynamic and infection dynamic monotherapy model. 3TC plasma concentration versus time profiles was used to drive the cellular accumulation of 3TC-triphosphate (TP) in primary human lymphocytes in the model, over a 16 week period. The fraction of HIV reverse transcription inhibited was calculated using the median inhibitory concentration and intracellular 3TC-TP levels. Virus loads and activated CD4+T-cell counts were generated for 2,200 theoretical individuals and compared with the outcomes of an actual 3TC monotherapy trial at the same dose. Pharmacokinetic variance alone did not account for the interindividual HIV-load variability. However, selection of appropriate distributions of the various pharmacokinetic and infection dynamics parameters produced a similar range of virus load reductions to actual observations. Therefore, once parameter and variance distributions are standardized, this modelling approach could be helpful in planning clinical trials and predicting the antiviral contribution of each agent in a HAART modality.
Antimicrobial Agents and Chemotherapy | 2007
Stephan Menne; Ghazia Asif; Jannan Narayanasamy; Scott D. Butler; Andrea L. George; Selwyn J. Hurwitz; Raymond F. Schinazi; Chung K. Chu; Paul J. Cote; John L. Gerin; Bud C. Tennant
ABSTRACT (−)-β-d-2-Aminopurine dioxolane (APD) is a nucleoside prodrug that is efficiently converted to 9-(β-d-1,3-dioxolan-4-yl)guanine (DXG). DXG has antiviral activity in vitro against hepatitis B virus (HBV) but limited aqueous solubility, making it difficult to administer orally to HBV-infected individuals. APD is more water soluble than DXG and represents a promising prodrug for the delivery of DXG. A placebo-controlled, dose-ranging efficacy and pharmacokinetic study was conducted with woodchucks that were chronically infected with woodchuck hepatitis virus (WHV). APD was efficiently converted to DXG after oral and intravenous administrations of APD, with serum concentrations of DXG being higher following oral administration than following intravenous administration, suggestive of a considerable first-pass intestinal and/or hepatic metabolism. APD administered orally at 1, 3, 10, and 30 mg/kg of body weight per day for 4 weeks produced a dose-dependent antiviral response. Doses of 3 and 10 mg/kg/day reduced serum WHV viremia by 0.4 and 0.7 log10 copies/ml, respectively. The 30-mg/kg/day dose resulted in a more pronounced, statistically significant decline in serum WHV viremia of 1.9 log10 copies/ml and was associated with a 1.5-fold reduction in hepatic WHV DNA. Individual woodchucks within the highest APD dose group that had declines in serum WHV surface antigen levels, WHV viremia, and hepatic WHV DNA also had reductions in hepatic WHV RNA. There was a prompt recrudescence of WHV viremia following drug withdrawal. Therefore, oral administration of APD for 4 weeks was safe in the woodchuck model of chronic HBV infection, and the effect on serum WHV viremia was dose dependent.
Antimicrobial Agents and Chemotherapy | 2005
Brenda I. Hernandez-Santiago; Huachun Chen; Ghazia Asif; Thierry Beltran; Shuli Mao; Selwyn J. Hurwitz; Jason Grier; Harold M. McClure; Chung K. Chu; Dennis C. Liotta; Raymond F. Schinazi
ABSTRACT β-d-2′,3′-Dideoxy-3′-oxa-5-fluorocytidine (d-FDOC) is an effective inhibitor of human immunodeficiency virus 1 (HIV-1) and HIV-2, simian immunodeficiency virus, and hepatitis B virus (HBV) in vitro. The purpose of this study was to evaluate the intracellular metabolism of d-FDOC in human hepatoma (HepG2), human T-cell lymphoma (CEM), and primary human peripheral blood mononuclear (PBM) cells by using tritiated compound. By 24 h, the levels of d-FDOC-triphosphate (d-FDOC-TP) were 2.8 ± 0.4, 6.7 ± 2.3, and 2.0 ± 0.1 pmol/106 cells in HepG2, CEM, and primary human PBM cells, respectively. Intracellular d-FDOC-TP concentrations remained greater than the 50% inhibitory concentration for HIV-1 reverse transcriptase for up to 24 h after removal of the drug from cell cultures. In addition to d-FDOC-monophosphate (d-FDOC-MP), -diphosphate (d-FDOC-DP), and -TP, d-FDOC-DP-ethanolamine and d-FDOC-DP-choline were detected in all cell extracts as major intracellular metabolites. d-FDOC was not a substrate for Escherichia coli thymidine phosphorylase. No toxicity was observed in mice given d-FDOC intraperitoneally for 6 days up to a dose of 100 mg/kg per day. Pharmacokinetic studies in rhesus monkeys indicated that d-FDOC has a t1/2 of 2.1 h in plasma and an oral bioavailability of 38%. The nucleoside was excreted unchanged primary in the urine, and no metabolites were detected in plasma or urine. These results suggest that further safety and pharmacological studies are warranted to assess the potential of this nucleoside for the treatment of HIV- and HBV-infected individuals.
Carcinogenesis | 2013
Sushma R. Gundala; Chunhua Yang; N. Lakshminarayana; Ghazia Asif; Meenakshi V. Gupta; Shahab A. Shamsi; Ritu Aneja
Polyphenolic phytochemicals present in fruits and vegetables indisputably confer anticancer benefits upon regular consumption. Recently, we demonstrated the growth-inhibitory and apoptosis-inducing properties of polyphenol-rich sweet potato greens extract (SPGE) in cell culture and in vivo prostate cancer xenograft models. However, the bioactive constituents remain elusive. Here, we report a bioactivity-guided fractionation of SPGE based upon differential solvent polarity using chromatographic techniques that led to the identification of a remarkably active polyphenol-enriched fraction, F5, which was ~100-fold more potent than the parent extract as shown by IC50 measurements in human prostate cancer cells. High-performance liquid chromatography-ultraviolet and mass spectrometric analyses of the seven SPGE fractions suggested varying abundance of the major phenols, quinic acid (QA), caffeic acid, its ester chlorogenic acid, and isochlorogenic acids, 4,5-di-CQA, 3,5-di-CQA and 3,4-di-CQA, with a distinct composition of the most active fraction, F5. Subfractionation of F5 resulted in loss of bioactivity, suggesting synergistic interactions among the constituent phytochemicals. Quantitative analyses revealed a ~2.6- and ~3.6-fold enrichment of QA and chlorogenic acid, respectively, in F5 and a definitive ratiometric relationship between the isochlorogenic acids. Daily oral administration of 400mg/kg body wt of F5 inhibited growth and progression of prostate tumor xenografts by ~75% in nude mice, as evidenced by tumor volume measurements and non-invasive real-time bioluminescence imaging. These data generate compelling grounds to further examine the chemopreventive efficacy of the most active fraction of SPGE and suggest its potential usefulness as a dietary supplement for prostate cancer management.
Antimicrobial Agents and Chemotherapy | 2010
Selwyn J. Hurwitz; Ghazia Asif; Emilie Fromentin; Phillip M. Tharnish; Raymond F. Schinazi
ABSTRACT Amdoxovir (AMDX) inhibits HIV-1 containing the M184V/I mutation and is rapidly absorbed and deaminated to its active metabolite, β-d-dioxolane guanosine (DXG). DXG is synergistic with zidovudine (ZDV) in HIV-1-infected primary human lymphocytes. A recent in silico pharmacokinetic (PK)/enzyme kinetic study suggested that ZDV at 200 mg twice a day (b.i.d.) may reduce toxicity without compromising efficacy relative to the standard 300-mg b.i.d. dose. Therefore, an intense PK clinical study was conducted using AMDX/placebo, with or without ZDV, in 24 subjects randomized to receive oral AMDX at 500 mg b.i.d., AMDX at 500 mg plus ZDV at 200 or 300 mg b.i.d., or ZDV at 200 or 300 mg b.i.d. for 10 days. Full plasma PK profiles were collected on days 1 and 10, and complete urine sampling was performed on day 9. Plasma and urine concentrations of AMDX, DXG, ZDV, and ZDV-5′-O-glucuronide (GZDV) were measured using a validated liquid chromatography-tandem mass spectrometry method. Data were analyzed using noncompartmental methods, and multiple comparisons were performed on the log-transformed parameters, at steady state. Coadministration of AMDX with ZDV did not significantly change either of the plasma PK parameters or percent recovery in the urine of AMDX, DXG, or ZDV/GZDV. Larger studies with AMDX/ZDV, with a longer duration, are warranted.