Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ghidewon Arefe is active.

Publication


Featured researches published by Ghidewon Arefe.


Nature Nanotechnology | 2014

Atomically thin p–n junctions with van der Waals heterointerfaces

Chul Ho Lee; Gwan Hyoung Lee; Arend van der Zande; W.Q. Chen; Yilei Li; Minyong Han; Xu Cui; Ghidewon Arefe; Colin Nuckolls; Tony F. Heinz; Jing Guo; James Hone; Philip Kim

Semiconductor p-n junctions are essential building blocks for electronic and optoelectronic devices. In conventional p-n junctions, regions depleted of free charge carriers form on either side of the junction, generating built-in potentials associated with uncompensated dopant atoms. Carrier transport across the junction occurs by diffusion and drift processes influenced by the spatial extent of this depletion region. With the advent of atomically thin van der Waals materials and their heterostructures, it is now possible to realize a p-n junction at the ultimate thickness limit. Van der Waals junctions composed of p- and n-type semiconductors--each just one unit cell thick--are predicted to exhibit completely different charge transport characteristics than bulk heterojunctions. Here, we report the characterization of the electronic and optoelectronic properties of atomically thin p-n heterojunctions fabricated using van der Waals assembly of transition-metal dichalcogenides. We observe gate-tunable diode-like current rectification and a photovoltaic response across the p-n interface. We find that the tunnelling-assisted interlayer recombination of the majority carriers is responsible for the tunability of the electronic and optoelectronic processes. Sandwiching an atomic p-n junction between graphene layers enhances the collection of the photoexcited carriers. The atomically scaled van der Waals p-n heterostructures presented here constitute the ultimate functional unit for nanoscale electronic and optoelectronic devices.


Nature Nanotechnology | 2015

Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform

Xu Cui; Gwan Hyoung Lee; Young Duck Kim; Ghidewon Arefe; Pinshane Y. Huang; Chulho Lee; Daniel Chenet; Xiangwei Zhang; Lei Wang; Fan Ye; Filippo Pizzocchero; Bjarke Sørensen Jessen; Kenji Watanabe; Takashi Taniguchi; David A. Muller; Tony Low; Philip Kim; James Hone

Atomically thin two-dimensional semiconductors such as MoS2 hold great promise for electrical, optical and mechanical devices and display novel physical phenomena. However, the electron mobility of mono- and few-layer MoS2 has so far been substantially below theoretically predicted limits, which has hampered efforts to observe its intrinsic quantum transport behaviours. Potential sources of disorder and scattering include defects such as sulphur vacancies in the MoS2 itself as well as extrinsic sources such as charged impurities and remote optical phonons from oxide dielectrics. To reduce extrinsic scattering, we have developed here a van der Waals heterostructure device platform where MoS2 layers are fully encapsulated within hexagonal boron nitride and electrically contacted in a multi-terminal geometry using gate-tunable graphene electrodes. Magneto-transport measurements show dramatic improvements in performance, including a record-high Hall mobility reaching 34,000 cm(2) V(-1) s(-1) for six-layer MoS2 at low temperature, confirming that low-temperature performance in previous studies was limited by extrinsic interfacial impurities rather than bulk defects in the MoS2. We also observed Shubnikov-de Haas oscillations in high-mobility monolayer and few-layer MoS2. Modelling of potential scattering sources and quantum lifetime analysis indicate that a combination of short-range and long-range interfacial scattering limits the low-temperature mobility of MoS2.


ACS Nano | 2015

Highly Stable, Dual-Gated MoS2 Transistors Encapsulated by Hexagonal Boron Nitride with Gate-Controllable Contact, Resistance, and Threshold Voltage.

Gwan Hyoung Lee; Xu Cui; Young Duck Kim; Ghidewon Arefe; Xian Zhang; Chul Ho Lee; Fan Ye; Kenji Watanabe; Takashi Taniguchi; Philip Kim; James Hone

Emerging two-dimensional (2D) semiconductors such as molybdenum disulfide (MoS2) have been intensively studied because of their novel properties for advanced electronics and optoelectronics. However, 2D materials are by nature sensitive to environmental influences, such as temperature, humidity, adsorbates, and trapped charges in neighboring dielectrics. Therefore, it is crucial to develop device architectures that provide both high performance and long-term stability. Here we report high performance of dual-gated van der Waals (vdW) heterostructure devices in which MoS2 layers are fully encapsulated by hexagonal boron nitride (hBN) and contacts are formed using graphene. The hBN-encapsulation provides excellent protection from environmental factors, resulting in highly stable device performance, even at elevated temperatures. Our measurements also reveal high-quality electrical contacts and reduced hysteresis, leading to high two-terminal carrier mobility (33-151 cm(2) V(-1) s(-1)) and low subthreshold swing (80 mV/dec) at room temperature. Furthermore, adjustment of graphene Fermi level and use of dual gates enable us to separately control contact resistance and threshold voltage. This novel vdW heterostructure device opens up a new way toward fabrication of stable, high-performance devices based on 2D materials.


Nature Communications | 2017

Coulomb engineering of the bandgap and excitons in two-dimensional materials

Archana Raja; Andrey Chaves; Jaeeun Yu; Ghidewon Arefe; Heather M. Hill; Albert F. Rigosi; Timothy C. Berkelbach; Philipp Nagler; Christian Schüller; Tobias Korn; Colin Nuckolls; James Hone; Louis E. Brus; Tony F. Heinz; David R. Reichman; Alexey Chernikov

The ability to control the size of the electronic bandgap is an integral part of solid-state technology. Atomically thin two-dimensional crystals offer a new approach for tuning the energies of the electronic states based on the unusual strength of the Coulomb interaction in these materials and its environmental sensitivity. Here, we show that by engineering the surrounding dielectric environment, one can tune the electronic bandgap and the exciton binding energy in monolayers of WS2 and WSe2 by hundreds of meV. We exploit this behaviour to present an in-plane dielectric heterostructure with a spatially dependent bandgap, as an initial step towards the creation of diverse lateral junctions with nanoscale resolution.


APL Materials | 2014

Heterostructures based on inorganic and organic van der Waals systems

Gwan Hyoung Lee; Chul Lee; Arend van der Zande; Minyong Han; Xu Cui; Ghidewon Arefe; Colin Nuckolls; Tony F. Heinz; James Hone; Philip Kim

The two-dimensional limit of layered materials has recently been realized through the use of van der Waals (vdW) heterostructures composed of weakly interacting layers. In this paper, we describe two different classes of vdW heterostructures: inorganic vdW heterostructures prepared by co-lamination and restacking; and organic-inorganic hetero-epitaxy created by physical vapor deposition of organic molecule crystals on an inorganic vdW substrate. Both types of heterostructures exhibit atomically clean vdW interfaces. Employing such vdW heterostructures, we have demonstrated various novel devices, including graphene/hexagonal boron nitride (hBN) and MoS2 heterostructures for memory devices; graphene/MoS2/WSe2/graphene vertical p-n junctions for photovoltaic devices, and organic crystals on hBN with graphene electrodes for high-performance transistors.


Nano Letters | 2016

Direct Measurement of the Tunable Electronic Structure of Bilayer MoS2 by Interlayer Twist

Po-Chun Yeh; Wencan Jin; Nader Zaki; Jens Kunstmann; Daniel Chenet; Ghidewon Arefe; Jerzy T. Sadowski; Jerry I. Dadap; Peter Sutter; James Hone; Richard M. Osgood

Using angle-resolved photoemission on micrometer-scale sample areas, we directly measure the interlayer twist angle-dependent electronic band structure of bilayer molybdenum-disulfide (MoS2). Our measurements, performed on arbitrarily stacked bilayer MoS2 flakes prepared by chemical vapor deposition, provide direct evidence for a downshift of the quasiparticle energy of the valence band at the Brillouin zone center (Γ̅ point) with the interlayer twist angle, up to a maximum of 120 meV at a twist angle of ∼40°. Our direct measurements of the valence band structure enable the extraction of the hole effective mass as a function of the interlayer twist angle. While our results at Γ̅ agree with recently published photoluminescence data, our measurements of the quasiparticle spectrum over the full 2D Brillouin zone reveal a richer and more complicated change in the electronic structure than previously theoretically predicted. The electronic structure measurements reported here, including the evolution of the effective mass with twist-angle, provide new insight into the physics of twisted transition-metal dichalcogenide bilayers and serve as a guide for the practical design of MoS2 optoelectronic and spin-/valley-tronic devices.


Physical Review B | 2015

Tuning the electronic structure of monolayer graphene/ Mo S 2 van der Waals heterostructures via interlayer twist

Wencan Jin; Po-Chun Yeh; Nader Zaki; Daniel Chenet; Ghidewon Arefe; Yufeng Hao; Alessandro Sala; Tevfik Onur Menteş; Jerry I. Dadap; A. Locatelli; James Hone; Richard M. Osgood

We directly measure the electronic structure of twisted graphene/MoS2 van der Waals heterostructures, in which both graphene and MoS2 are monolayers. We use cathode lens microscopy and microprobe angle-resolved photoemission spectroscopy measurements to image the surface, determine twist angle, and map the electronic structure of these artificial heterostructures. For monolayer graphene on monolayer MoS2, the resulting band structure reveals the absence of hybridization between the graphene and MoS2 electronic states. Further, the graphene-derived electronic structure in the heterostructures remains intact, irrespective of the twist angle between the two materials. In contrast, however, the electronic structure associated with the MoS2 layer is found to be twist-angle dependent; in particular, the relative difference in the energy of the valence band maximum at {\Gamma} and K of the MoS2 layer varies from approximately 0 to 0.2 eV. Our results suggest that monolayer MoS2 within the heterostructure becomes predominantly an indirect bandgap system for all twist angles except in the proximity of 30 degrees. This result enables potential bandgap engineering in van der Waals heterostructures comprised of monolayer structures.


Physical Review Letters | 2014

Valley splitting and polarization by the Zeeman effect in monolayer MoSe2.

Yilei Li; Jonathan Ludwig; Tony Low; Alexey Chernikov; Xu Cui; Ghidewon Arefe; Young Duck Kim; Arend van der Zande; Albert F. Rigosi; Heather M. Hill; Suk Hyun Kim; James Hone; Zhiqiang Li; Dmitry Smirnov; Tony F. Heinz


arXiv: Materials Science | 2014

Multi-terminal electrical transport measurements of molybdenum disulphide using van der Waals heterostructure device platform

Xu Cui; Gwan Hyoung Lee; Young Duck Kim; Ghidewon Arefe; Pinshane Y. Huang; Chul-Ho Lee; Daniel Chenet; Xian Zhang; Lei Wang; Fan Ye; Filippo Pizzocchero; Bjarke Sørensen Jessen; Kenji Watanabe; Takashi Taniguchi; David A. Muller; Tony Low; Philip Kim; James Hone


Physical Review Materials | 2018

Layer dependence of third-harmonic generation in thick multilayer graphene

Hao Yang; Honghua Guan; Nicolas Biekert; Ghidewon Arefe; Damien C. Chang; Yawen Sun; Po-Chun Yeh; Xiaoping Liu; Sung-Young Hong; Ida Delač Marion; Marko Kralj; James Hone; Richard M. Osgood; Jerry I. Dadap

Collaboration


Dive into the Ghidewon Arefe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xu Cui

Columbia University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge