Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giampaolo Morciano is active.

Publication


Featured researches published by Giampaolo Morciano.


Nature Cell Biology | 2016

The metabolic co-regulator PGC1α suppresses prostate cancer metastasis

Verónica Torrano; Lorea Valcarcel-Jimenez; Ana R. Cortazar; Xiaojing Liu; Jelena Urosevic; Mireia Castillo-Martin; Sonia Fernández-Ruiz; Giampaolo Morciano; Alfredo Caro-Maldonado; Marc Guiu; Patricia Zúñiga-García; Mariona Graupera; Anna Bellmunt; Pahini Pandya; Mar Lorente; Natalia Martín-Martín; James D. Sutherland; Pilar Sánchez-Mosquera; Laura Bozal-Basterra; Amaia Arruabarrena-Aristorena; Antonio Berenguer; Nieves Embade; Aitziber Ugalde-Olano; Isabel Lacasa-Viscasillas; Ana Loizaga-Iriarte; Miguel Unda-Urzaiz; Nikolaus Schultz; Ana M. Aransay; Victoria Sanz-Moreno; Rosa Barrio

Cellular transformation and cancer progression is accompanied by changes in the metabolic landscape. Master co-regulators of metabolism orchestrate the modulation of multiple metabolic pathways through transcriptional programs, and hence constitute a probabilistically parsimonious mechanism for general metabolic rewiring. Here we show that the transcriptional co-activator peroxisome proliferator-activated receptor gamma co-activator 1α (PGC1α) suppresses prostate cancer progression and metastasis. A metabolic co-regulator data mining analysis unveiled that PGC1α is downregulated in prostate cancer and associated with disease progression. Using genetically engineered mouse models and xenografts, we demonstrated that PGC1α opposes prostate cancer progression and metastasis. Mechanistically, the use of integrative metabolomics and transcriptomics revealed that PGC1α activates an oestrogen-related receptor alpha (ERRα)-dependent transcriptional program to elicit a catabolic state and metastasis suppression. Importantly, a signature based on the PGC1α–ERRα pathway exhibited prognostic potential in prostate cancer, thus uncovering the relevance of monitoring and manipulating this pathway for prostate cancer stratification and treatment.


EMBO Reports | 2017

Mitochondrial permeability transition involves dissociation of F1FO ATP synthase dimers and C-ring conformation

Massimo Bonora; Claudia Morganti; Giampaolo Morciano; Gaia Pedriali; Magdalena Lebiedzinska-Arciszewska; Giorgio Aquila; Carlotta Giorgi; Paola Rizzo; Gianluca Campo; Roberto Ferrari; Guido Kroemer; Mariusz R. Wieckowski; Lorenzo Galluzzi; Paolo Pinton

The impact of the mitochondrial permeability transition (MPT) on cellular physiology is well characterized. In contrast, the composition and mode of action of the permeability transition pore complex (PTPC), the supramolecular entity that initiates MPT, remain to be elucidated. Specifically, the precise contribution of the mitochondrial F1FO ATP synthase (or subunits thereof) to MPT is a matter of debate. We demonstrate that F1FO ATP synthase dimers dissociate as the PTPC opens upon MPT induction. Stabilizing F1FO ATP synthase dimers by genetic approaches inhibits PTPC opening and MPT. Specific mutations in the F1FO ATP synthase c subunit that alter C‐ring conformation sensitize cells to MPT induction, which can be reverted by stabilizing F1FO ATP synthase dimers. Destabilizing F1FO ATP synthase dimers fails to trigger PTPC opening in the presence of mutants of the c subunit that inhibit MPT. The current study does not provide direct evidence that the C‐ring is the long‐sought pore‐forming subunit of the PTPC, but reveals that PTPC opening requires the dissociation of F1FO ATP synthase dimers and involves the C‐ring.


Molecular Biology of the Cell | 2016

Mcl-1 involvement in mitochondrial dynamics is associated with apoptotic cell death

Giampaolo Morciano; Carlotta Giorgi; Dario Balestra; Saverio Marchi; Daniela Perrone; Mirko Pinotti; Paolo Pinton

Mcl-1 protein affects mitochondrial calcium homeostasis to modulate apoptosis. Mcl-1 is involved in mitochondrial fusion and fission in a Drp1-dependent manner By using splicing-switching antisense oligonucleotides, it is possible to increase the synthesis of the Mcl-1 proapoptotic isoform, increasing the sensitivity of cancer cells to apoptotic stimuli.


Cell Calcium | 2018

Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death

Saverio Marchi; Simone Patergnani; Sonia Missiroli; Giampaolo Morciano; Alessandro Rimessi; Mariusz R. Wieckowski; Carlotta Giorgi; Paolo Pinton

The endoplasmic reticulum (ER) and mitochondria cannot be considered as static structures, as they intimately communicate, forming very dynamic platforms termed mitochondria-associated membranes (MAMs). In particular, the ER transmits proper Ca2+ signals to mitochondria, which decode them into specific inputs to regulate essential functions, including metabolism, energy production and apoptosis. Here, we will describe the different molecular players involved in the transfer of Ca2+ ions from the ER lumen to the mitochondrial matrix and how modifications in both ER-mitochondria contact sites and Ca2+ signaling can alter the cell death execution program.


Nature Protocols | 2017

Use of luciferase probes to measure ATP in living cells and animals

Giampaolo Morciano; Alba Clara Sarti; Saverio Marchi; Sonia Missiroli; Simonetta Falzoni; Lizzia Raffaghello; Vito Pistoia; Carlotta Giorgi; Francesco Di Virgilio; Paolo Pinton

ATP, the energy exchange factor that connects anabolism and catabolism, is required for major reactions and processes that occur in living cells, such as muscle contraction, phosphorylation and active transport. ATP is also the key molecule in extracellular purinergic signaling mechanisms, with an established crucial role in inflammation and several additional disease conditions. Here, we describe detailed protocols to measure the ATP concentration in isolated living cells and animals using luminescence techniques based on targeted luciferase probes. In the presence of magnesium, oxygen and ATP, the protein luciferase catalyzes oxidation of the substrate luciferin, which is associated with light emission. Recombinantly expressed wild-type luciferase is exclusively cytosolic; however, adding specific targeting sequences can modify its cellular localization. Using this strategy, we have constructed luciferase chimeras targeted to the mitochondrial matrix and the outer surface of the plasma membrane. Here, we describe optimized protocols for monitoring ATP concentrations in the cytosol, mitochondrial matrix and pericellular space in living cells via an overall procedure that requires an average of 3 d. In addition, we present a detailed protocol for the in vivo detection of extracellular ATP in mice using luciferase-transfected reporter cells. This latter procedure may require up to 25 d to complete.


Nature Protocols | 2016

Comprehensive analysis of mitochondrial permeability transition pore activity in living cells using fluorescence-imaging-based techniques.

Massimo Bonora; Claudia Morganti; Giampaolo Morciano; Carlotta Giorgi; Mariusz R. Wieckowski; Paolo Pinton

Mitochondrial permeability transition (mPT) refers to a sudden increase in the permeability of the inner mitochondrial membrane. Long-term studies of mPT revealed that this phenomenon has a critical role in multiple pathophysiological processes. mPT is mediated by the opening of a complex termed the mPT pore (mPTP), which is responsible for the osmotic influx of water into the mitochondrial matrix, resulting in swelling of mitochondria and dissipation of the mitochondrial membrane potential. Here we provide three independent optimized protocols for monitoring mPT in living cells: (i) measurement using a calcein–cobalt technique, (ii) measurement of the mPTP-dependent alteration of the mitochondrial membrane potential, and (iii) measurement of mitochondrial swelling. These procedures can easily be modified and adapted to different cell types. Cell culture and preparation of the samples are estimated to take ∼1 d for methods (i) and (ii), and ∼3 d for method (iii). The entire experiment, including analyses, takes ∼2 h.


Biology of the Cell | 2016

Intersection of mitochondrial fission and fusion machinery with apoptotic pathways: Role of Mcl‐1

Giampaolo Morciano; Gaia Pedriali; Luigi Sbano; Tommaso Iannitti; Carlotta Giorgi; Paolo Pinton

Mitochondria actively contribute to apoptotic cell death through mechanisms including the loss of integrity of the outer mitochondrial membrane, the release of intermembrane space proteins, such as cytochrome c, in the cytosol and the caspase cascade activation. This process is the result of careful cooperation not only among members of the Bcl‐2 family but also dynamin‐related proteins. These events are often accompanied by fission of the organelle, thus linking mitochondrial dynamics to apoptosis. Emerging evidences are suggesting a fine regulation of mitochondrial morphology by Bcl‐2 family members and active participation of fission–fusion proteins in apoptosis. The debate whether in mitochondrial morphogenesis the role of Bcl‐2 family members is functionally distinct from their role in apoptosis is still open and, above all, which morphological changes are associated with cell death sensitisation. This review will cover the findings on how the mitochondrial fission and fusion machinery may intersect apoptotic pathways focusing on recent advances on the key role played by Mcl‐1.


International Journal of Cardiology | 2016

Fo ATP synthase C subunit serum levels in patients with ST-segment Elevation Myocardial Infarction: Preliminary findings

Gianluca Campo; Giampaolo Morciano; Rita Pavasini; Massimo Bonora; Luigi Sbano; Simone Biscaglia; Matteo Bovolenta; Mirko Pinotti; Silvia Punzetti; Paola Rizzo; Giorgio Aquila; Carlotta Giorgi; Roberto Ferrari; Paolo Pinton

BACKGROUND Recent studies in cell cultures hypothesized that the long-sought molecular pore of the mitochondrial permeability transition pore could be the Fo ATP synthase C subunit (Csub). We assessed Csub in patients with ST-segment elevation myocardial infarction (STEMI) and if it is associated with surrogate endpoints of myocardial reperfusion. METHODS We enrolled 158 first-time acute anterior STEMI treated with successful percutaneous coronary intervention (PCI). Csub was measured, after the procedure, in serum by ELISA. Csub values were related to thrombolysis in myocardial infarction (TIMI) myocardial perfusion grade (TMPG), TIMI frame count (TFC), ST-segment resolution and cardiac marker release. Echocardiography and clinical outcome were recorded at 6months. RESULTS Csub was detectable in serum and it was not normally distributed (6.3% [4-9.3%]). Csub values were higher in patients with poor values of TMPG and TFC (p=0.002 and p=0.001, respectively). Csub values were higher in patients with absent or partial ST-segment resolution as compared to those with complete ST-segment resolution (p<0.0001 and p=0.003, respectively). After adjustment for potential confounding factors, Csub emerged as an independent determinant of absent ST-segment resolution (HR 1.8, 95% CI 1.5-2.3, p=0.007), TMPG 0-1 (HR 1.7, 95% CI 1.3-2.5, p=0.01) and TFC above the median value (HR 1.5, 95% CI 1.3-2.1, p=0.03). Left ventricle ejection fraction, wall motion score index and cumulative incidence of death and heart failure were worse in patients with elevated Csub. CONCLUSIONS Our study is the first evidence that Csub is detectable in STEMI patients and that it is significantly related to several surrogate markers of myocardial reperfusion.


Advances in Experimental Medicine and Biology | 2017

Mechanistic Role of mPTP in Ischemia-Reperfusion Injury.

Giampaolo Morciano; Massimo Bonora; Gianluca Campo; Giorgio Aquila; Paola Rizzo; Carlotta Giorgi; Mariusz R. Wieckowski; Paolo Pinton

Acute myocardial infarction (MI) is a major cause of death and disability worldwide. The treatment of choice for reducing ischemic injury and limiting infarct size (IS) in patients with ST-segment elevation MI (STEMI) is timely and effective myocardial reperfusion via primary percutaneous coronary intervention (PCI). However, myocardial reperfusion itself may induce further cardiomyocyte death, a phenomenon known as reperfusion injury (RI). The opening of a large pore in the mitochondrial membrane, namely, the mitochondrial permeability transition pore (mPTP), is widely recognized as the final step of RI and is responsible for mitochondrial and cardiomyocyte death. Although myocardial reperfusion interventions continue to improve, there remain no effective therapies for preventing RI due to incomplete knowledge regarding RI components and mechanisms and to premature translations of findings from animals to humans. In the last year, increasing amounts of data describing mPTP components, structure, regulation and function have surfaced. These data may be crucial for gaining a better understanding of RI genesis and for planning future trials evaluating new cardioprotective strategies. In this chapter, we review the role of the mPTP in RI pathophysiology and report on recent studies investigating its structure and components. Finally, we provide a brief overview of principal cardioprotective strategies and their pitfalls.


Frontiers in Oncology | 2016

Alterations in Mitochondrial and Endoplasmic Reticulum Signaling by p53 Mutants.

Carlotta Giorgi; Massimo Bonora; Sonia Missiroli; Claudia Morganti; Giampaolo Morciano; Mariusz R. Wieckowski; Paolo Pinton

The p53 protein is probably the most important tumor suppressor, acting as a nuclear transcription factor primarily through the modulation of cell death. However, currently, it is well accepted that p53 can also exert important transcription-independent pro-cell death actions. Indeed, cytosolic localization of endogenous wild-type or transactivation-deficient p53 is necessary and sufficient for the induction of apoptosis and autophagy. Here, we present the extra-nuclear activities of p53 associated with the mitochondria and the endoplasmic reticulum, highlighting the activities of the p53 mutants on these compartments. These two intracellular organelles play crucial roles in the regulation of cell death, and it is now well established that they also represent sites where p53 can accumulate.

Collaboration


Dive into the Giampaolo Morciano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mariusz R. Wieckowski

Nencki Institute of Experimental Biology

View shared research outputs
Top Co-Authors

Avatar

Gianluca Campo

Cardiovascular Institute of the South

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge