Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon Barak is active.

Publication


Featured researches published by Simon Barak.


Trends in Plant Science | 2000

All in good time: the Arabidopsis circadian clock.

Simon Barak; Elaine M. Tobin; Christos Andronis; Shoji Sugano; Rachel M. Green

Biological time-keeping mechanisms have fascinated researchers since the movement of leaves with a daily rhythm was first described >270 years ago. The circadian clock confers a approximately 24-hour rhythm on a range of processes including leaf movements and the expression of some genes. Molecular mechanisms and components underlying clock function have been described in recent years for several animal and prokaryotic organisms, and those of plants are beginning to be characterized. The emerging model of the Arabidopsis clock has mechanistic parallels with the clocks of other model organisms, which consist of positive and negative feedback loops, but the molecular components appear to be unique to plants.


Journal of Experimental Botany | 2010

Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots

Gaston Zolla; Yair M. Heimer; Simon Barak

Plant roots exhibit remarkable developmental plasticity in response to local soil conditions. It is shown here that mild salt stress stimulates a stress-induced morphogenic response (SIMR) in Arabidopsis thaliana roots characteristic of several other abiotic stresses: the proliferation of lateral roots (LRs) with a concomitant reduction in LR and primary root length. The LR proliferation component of the salt SIMR is dramatically enhanced by the transfer of seedlings from a low to a high NO3− medium, thereby compensating for the decreased LR length and maintaining overall LR surface area. Increased LR proliferation is specific to salt stress (osmotic stress alone has no stimulatory effect) and is due to the progression of more LR primordia from the pre-emergence to the emergence stage, in salt-stressed plants. In salt-stressed seedlings, greater numbers of LR primordia exhibit expression of a reporter gene driven by the auxin-sensitive DR5 promoter than in unstressed seedlings. Moreover, in the auxin transporter mutant aux1-7, the LR proliferation component of the salt SIMR is completely abrogated. The results suggest that salt stress promotes auxin accumulation in developing primordia thereby preventing their developmental arrest at the pre-emergence stage. Examination of ABA and ethylene mutants revealed that ABA synthesis and a factor involved in the ethylene signalling network also regulate the LR proliferation component of the salt SIMR.


Plant Physiology | 2007

STRESS RESPONSE SUPPRESSOR1 and STRESS RESPONSE SUPPRESSOR2, Two DEAD-Box RNA Helicases That Attenuate Arabidopsis Responses to Multiple Abiotic Stresses

Pragya Kant; Surya Kant; Michal Gordon; Ruth Shaked; Simon Barak

Two genes encoding Arabidopsis (Arabidopsis thaliana) DEAD-box RNA helicases were identified in a functional genomics screen as being down-regulated by multiple abiotic stresses. Mutations in either gene caused increased tolerance to salt, osmotic, and heat stresses, suggesting that the helicases suppress responses to abiotic stress. The genes were therefore designated STRESS RESPONSE SUPPRESSOR1 (STRS1; At1g31970) and STRS2 (At5g08620). In the strs mutants, salt, osmotic, and cold stresses induced enhanced expression of genes encoding the transcriptional activators DREB1A/CBF3 and DREB2A and a downstream DREB target gene, RD29A. Under heat stress, the strs mutants exhibited enhanced expression of the heat shock transcription factor genes, HSF4 and HSF7, and the downstream gene HEAT SHOCK PROTEIN101. Germination of mutant seed was hyposensitive to the phytohormone abscisic acid (ABA), but mutants showed up-regulated expression of genes encoding ABA-dependent stress-responsive transcriptional activators and their downstream targets. In wild-type plants, STRS1 and STRS2 expression was rapidly down-regulated by salt, osmotic, and heat stress, but not cold stress. STRS expression was also reduced by ABA, but salt stress led to reduced STRS expression in both wild-type and ABA-deficient mutant plants. Taken together, our results suggest that STRS1 and STRS2 attenuate the expression of stress-responsive transcriptional activators and function in ABA-dependent and ABA-independent abiotic stress signaling networks.


Molecular Plant | 2008

The Clock Protein CCA1 and the bZIP Transcription Factor HY5 Physically Interact to Regulate Gene Expression in Arabidopsis

Christos Andronis; Simon Barak; Stephen M. Knowles; Shoji Sugano; Elaine M. Tobin

The circadian clock regulates the expression of an array of Arabidopsis genes such as those encoding the LIGHT-HARVESTING CHLOROPHYLL A/B (Lhcb) proteins. We have previously studied the promoters of two of these Arabidopsis genes--Lhcb1*1 and Lhcb1*3--and identified a sequence that binds the clock protein CIRCADIAN CLOCK ASSOCIATED 1 (CCA1). This sequence, designated CCA1-binding site (CBS), is necessary for phytochrome and circadian responsiveness of these genes. In close proximity to this sequence, there exists a G-box core element that has been shown to bind the bZIP transcription factor HY5 in other light-regulated plant promoters. In the present study, we examined the importance of the interaction of transcription factors binding the CBS and the G-box core element in the control of normal circadian rhythmic expression of Lhcb genes. Our results show that HY5 is able to specifically bind the G-box element in the Lhcb promoters and that CCA1 can alter the binding activity of HY5. We further show that CCA1 and HY5 can physically interact and that they can act synergistically on transcription in a yeast reporter gene assay. An absence of HY5 leads to a shorter period of Lhcb1*1 circadian expression but does not affect the circadian expression of CATALASE3 (CAT3), whose promoter lacks a G-box element. Our results suggest that interaction of the HY5 and CCA1 proteins on Lhcb promoters is necessary for normal circadian expression of the Lhcb genes.


Planta | 2011

Plant response to stress meets dedifferentiation.

Gideon Grafi; Vered Chalifa-Caspi; Tal Nagar; Inbar Plaschkes; Simon Barak; Vanessa Ransbotyn

Plant response to various stress conditions often results in expression of common genes, known as stress-responsive/inducible genes. Accumulating data point to a common, yet elusive process underlying the response of plant cells to stress. Evidence derived from transcriptome profiling of shoot apical meristem stem cells, dedifferentiating protoplast cells as well as from senescing cells lends support to a model in which a common response of cells to certain biotic and abiotic stresses converges on cellular dedifferentiation whereby cells first acquire a stem cell-like state before assuming a new fate.


Plant Physiology | 2008

The Arabidopsis Halophytic Relative Thellungiella halophila Tolerates Nitrogen-Limiting Conditions by Maintaining Growth, Nitrogen Uptake, and Assimilation

Surya Kant; Yong-Mei Bi; Elizabeth A. Weretilnyk; Simon Barak; Steven J. Rothstein

A comprehensive knowledge of mechanisms regulating nitrogen (N) use efficiency is required to reduce excessive input of N fertilizers while maintaining acceptable crop yields under limited N supply. Studying plant species that are naturally adapted to low N conditions could facilitate the identification of novel regulatory genes conferring better N use efficiency. Here, we show that Thellungiella halophila, a halophytic relative of Arabidopsis (Arabidopsis thaliana), grows better than Arabidopsis under moderate (1 mm nitrate) and severe (0.4 mm nitrate) N-limiting conditions. Thellungiella exhibited a lower carbon to N ratio than Arabidopsis under N limitation, which was due to Thellungiella plants possessing higher N content, total amino acids, total soluble protein, and lower starch content compared with Arabidopsis. Furthermore, Thellungiella had higher amounts of several metabolites, such as soluble sugars and organic acids, under N-sufficient conditions (4 mm nitrate). Nitrate reductase activity and NR2 gene expression in Thellungiella displayed less of a reduction in response to N limitation than in Arabidopsis. Thellungiella shoot GS1 expression was more induced by low N than in Arabidopsis, while in roots, Thellungiella GS2 expression was maintained under N limitation but was decreased in Arabidopsis. Up-regulation of NRT2.1 and NRT3.1 expression was higher and repression of NRT1.1 was lower in Thellungiella roots under N-limiting conditions compared with Arabidopsis. Differential transporter gene expression was correlated with higher nitrate influx in Thellungiella at low 15NO3− supply. Taken together, our results suggest that Thellungiella is tolerant to N-limited conditions and could act as a model system to unravel the mechanisms for low N tolerance.


Plant and Cell Physiology | 2012

Ecotypic Variability in the Metabolic Response of Seeds to Diurnal Hydration–Dehydration Cycles and its Relationship to Seed Vigor

Bing Bai; Noga Sikron; Tanya Gendler; Yana Kazachkova; Simon Barak; Gideon Grafi; Inna Khozin-Goldberg; Aaron Fait

Seeds in the seed bank experience diurnal cycles of imbibition followed by complete dehydration. These conditions pose a challenge to the regulation of germination. The effect of recurring hydration-dehydration (Hy-Dh) cycles were tested on seeds from four Arabidopsis thaliana accessions [Col-0, Cvi, C24 and Ler]. Diurnal Hy-Dh cycles had a detrimental effect on the germination rate and on the final percentage of germination in Col-0, Cvi and C24 ecotypes, but not in the Ler ecotype, which showed improved vigor following the treatments. Membrane permeability measured by ion conductivity was generally increased following each Hy-Dh cycle and was correlated with changes in the redox status represented by the GSSG/GSH (oxidized/reduced glutathione) ratio. Among the ecotypes, Col-0 seeds displayed the highest membrane permeability, whilst Ler was characterized by the greatest increase in electrical conductivity following Hy-Dh cycles. Following Dh 2 and Dh 3, the respiratory activity of Ler seeds significantly increased, in contrast to the other ecotypes, indicative of a dramatic shift in metabolism. These differences were associated with accession-specific content and patterns of change of (i) cell wall-related laminaribiose and mannose; (ii) fatty acid composition, specifically of the unsaturated oleic acid and α-linoleic acid; and (iii) asparagine, ornithine and the related polyamine putrescine. Furthermore, in the Ler ecotype the content of the tricarboxylic acid (TCA) cycle intermediates fumarate, succinate and malate increased in response to dehydration, in contrast to a decrease in the other three ecotypes. These findings provide a link between seed respiration, energy metabolism, fatty acid β-oxidation, nitrogen mobilization and membrane permeability and the improved germination of Ler seeds following Hy-Dh cycles.


Plant Physiology | 2013

Growth Platform-Dependent and -Independent Phenotypic and Metabolic Responses of Arabidopsis and Its Halophytic Relative, Eutrema salsugineum , to Salt Stress

Yana Kazachkova; Albert Batushansky; Aroldo Cisneros; Noemi Tel-Zur; Aaron Fait; Simon Barak

Eutrema salsugineum maintains its salt tolerance under very different growth conditions even though its development and metabolism show substantial growth condition-dependent differences. Comparative studies of the stress-tolerant Arabidopsis (Arabidopsis thaliana) halophytic relative, Eutrema salsugineum, have proven a fruitful approach to understanding natural stress tolerance. Here, we performed comparative phenotyping of Arabidopsis and E. salsugineum vegetative development under control and salt-stress conditions, and then compared the metabolic responses of the two species on different growth platforms in a defined leaf developmental stage. Our results reveal both growth platform-dependent and -independent phenotypes and metabolic responses. Leaf emergence was affected in a similar way in both species grown in vitro but the effects observed in Arabidopsis occurred at higher salt concentrations in E. salsugineum. No differences in leaf emergence were observed on soil. A new effect of a salt-mediated reduction in E. salsugineum leaf area was unmasked. On soil, leaf area reduction in E. salsugineum was mainly due to a fall in cell number, whereas both cell number and cell size contributed to the decrease in Arabidopsis leaf area. Common growth platform-independent leaf metabolic signatures such as high raffinose and malate, and low fumarate contents that could reflect core stress tolerance mechanisms, as well as growth platform-dependent metabolic responses were identified. In particular, the in vitro growth platform led to repression of accumulation of many metabolites including sugars, sugar phosphates, and amino acids in E. salsugineum compared with the soil system where these same metabolites accumulated to higher levels in E. salsugineum than in Arabidopsis. The observation that E. salsugineum maintains salt tolerance despite growth platform-specific phenotypes and metabolic responses suggests a considerable degree of phenotypic and metabolic adaptive plasticity in this extremophile.


Plant Journal | 2014

The Arabidopsis STRESS RESPONSE SUPPRESSOR DEAD-box RNA helicases are nucleolar- and chromocenter-localized proteins that undergo stress-mediated relocalization and are involved in epigenetic gene silencing

Asif Khan; Anna Garbelli; Serena Grossi; Assa Florentin; Giorgia Batelli; Tania Acuna; Gaston Zolla; Yuval Kaye; Laju K. Paul; Jian-Kang Zhu; Giovanni Maga; Gideon Grafi; Simon Barak

DEAD-box RNA helicases are involved in many aspects of RNA metabolism and in diverse biological processes in plants. Arabidopsis thaliana mutants of two DEAD-box RNA helicases, STRESS RESPONSE SUPPRESSOR1 (STRS1) and STRS2 were previously shown to exhibit tolerance to abiotic stresses and up-regulated stress-responsive gene expression. Here, we show that Arabidopsis STRS-overexpressing lines displayed a less tolerant phenotype and reduced expression of stress-induced genes confirming the STRSs as attenuators of Arabidopsis stress responses. GFP-STRS fusion proteins exhibited localization to the nucleolus, nucleoplasm and chromocenters and exhibited relocalization in response to abscisic acid (ABA) treatment and various stresses. This relocalization was reversed when stress treatments were removed. The STRS proteins displayed mis-localization in specific gene-silencing mutants and exhibited RNA-dependent ATPase and RNA-unwinding activities. In particular, STRS2 showed mis-localization in three out of four mutants of the RNA-directed DNA methylation (RdDM) pathway while STRS1 was mis-localized in the hd2c mutant that is defective in histone deacetylase activity. Furthermore, heterochromatic RdDM target loci displayed reduced DNA methylation and increased expression in the strs mutants. Taken together, our findings suggest that the STRS proteins are involved in epigenetic silencing of gene expression to bring about suppression of the Arabidopsis stress response.


Biochimica et Biophysica Acta | 2015

Stress induces cell dedifferentiation in plants.

Gideon Grafi; Simon Barak

Accumulating evidence lends support to the proposal that a major theme in plant responses to stresses is dedifferentiation, whereby mature cells acquire stem cell features (e.g. open chromatin conformation) prior to acquisition of a new cell fate. In this review, we discuss data addressing plant cell plasticity and provide evidence linking stress, dedifferentiation and a switch in cell fate. We emphasize the epigenetic modifications associated with stress-induced global changes in chromatin structure and conclude with the implications for genetic variation and for induced pluripotent stem cells in animals. It appears that stress is perceived as a signal that directs plant cells to undergo reprogramming (dedifferentiation) as a means for adaptation and in preparation for a stimulus-based acquisition of a new cell fate. This article is part of a Special Issue entitled: Stress as a fundamental theme in cell plasticity.

Collaboration


Dive into the Simon Barak's collaboration.

Top Co-Authors

Avatar

Aaron Fait

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Asif Khan

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gideon Grafi

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Micha Volokita

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Pragya Kant

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Ruth Shaked

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Yana Kazachkova

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Ali Nejidat

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Michal Gordon

Ben-Gurion University of the Negev

View shared research outputs
Researchain Logo
Decentralizing Knowledge