Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gig S. Mageras is active.

Publication


Featured researches published by Gig S. Mageras.


Medical Physics | 2006

The management of respiratory motion in radiation oncology report of AAPM Task Group 76

P Keall; Gig S. Mageras; James M. Balter; Richard S. Emery; Kenneth Forster; Steve B. Jiang; Jeffrey M. Kapatoes; Daniel A. Low; Martin J. Murphy; B. Murray; C Ramsey; Marcel van Herk; S. Vedam; John Wong; Ellen Yorke

This document is the report of a task group of the AAPM and has been prepared primarily to advise medical physicists involved in the external-beam radiation therapy of patients with thoracic, abdominal, and pelvic tumors affected by respiratory motion. This report describes the magnitude of respiratory motion, discusses radiotherapy specific problems caused by respiratory motion, explains techniques that explicitly manage respiratory motion during radiotherapy and gives recommendations in the application of these techniques for patient care, including quality assurance (QA) guidelines for these devices and their use with conformal and intensity modulated radiotherapy. The technologies covered by this report are motion-encompassing methods, respiratory gated techniques, breath-hold techniques, forced shallow-breathing methods, and respiration-synchronized techniques. The main outcome of this report is a clinical process guide for managing respiratory motion. Included in this guide is the recommendation that tumor motion should be measured (when possible) for each patient for whom respiratory motion is a concern. If target motion is greater than 5mm, a method of respiratory motion management is available, and if the patient can tolerate the procedure, respiratory motion management technology is appropriate. Respiratory motion management is also appropriate when the procedure will increase normal tissue sparing. Respiratory motion management involves further resources, education and the development of and adherence to QA procedures.


International Journal of Radiation Oncology Biology Physics | 2000

The deep inspiration breath-hold technique in the treatment of inoperable non–small-cell lung cancer☆

Kenneth E. Rosenzweig; Joseph Hanley; Dennis Mah; Gig S. Mageras; Margie Hunt; Sean Toner; C Burman; C.C. Ling; Borys Mychalczak; Zvi Fuks; Steven A. Leibel

PURPOSE Conventional radiotherapeutic techniques are associated with lung toxicity that limits the treatment dose. Motion of the tumor during treatment requires the use of large safety margins that affect the feasibility of treatment. To address the control of tumor motion and decrease the volume of normal lung irradiated, we investigated the use of three-dimensional conformal radiation therapy (3D-CRT) in conjunction with the deep inspiration breath-hold (DIBH) technique. METHODS AND MATERIALS In the DIBH technique, the patient is initially maintained at quiet tidal breathing, followed by a deep inspiration, a deep expiration, a second deep inspiration, and breath-hold. At this point the patient is at approximately 100% vital capacity, and simulation, verification, and treatment take place during this phase of breath-holding. RESULTS Seven patients have received a total of 164 treatment sessions and have tolerated the technique well. The estimated normal tissue complication probabilities decreased in all patients at their prescribed dose when compared to free breathing. The dose to which patients could be treated with DIBH increased on average from 69.4 Gy to 87.9 Gy, without increasing the risk of toxicity. CONCLUSIONS The DIBH technique provides an advantage to conventional free-breathing treatment by decreasing lung density, reducing normal safety margins, and enabling more accurate treatment. These improvements contribute to the effective exclusion of normal lung tissue from the high-dose region and permit the use of higher treatment doses without increased risks of toxicity.


Radiotherapy and Oncology | 1999

Quantification and predictors of prostate position variability in 50 patients evaluated with multiple CT scans during conformal radiotherapy.

Michael J. Zelefsky; Diane Crean; Gig S. Mageras; Olga Lyass; Laura Happersett; C. Clifton Ling; Steven A. Leibel; Zvi Fuks; Sarah Bull; Hanne M. Kooy; Marcel van Herk; Gerald Kutcher

PURPOSE To determine the extent and predictors for prostatic motion in a large number of patients evaluated with multiple CT scans during radiotherapy, and evaluate the implications of these data on the design of appropriate treatment margins for patients receiving high-dose three-dimensional conformal radiotherapy. MATERIALS AND METHODS Fifty patients underwent four serial computerized tomography (CT) scans, consisting of an initial planning scan and subsequent scans at the beginning, middle, and end of the treatment course. Each scan was performed with the patient in the prone treatment position within an immobilization device used during therapy. Contours of the prostate and seminal vesicles were drawn on the axial CT slices of each scan, and the scans were matched by alignment of the pelvic bones with a chamfer matching algorithm. Using the contour information, distributions of the displacement of the organ center of mass and organ border from the planning position were determined separately for the prostate and seminal vesicles in each of the three principle directions: anterior-posterior (AP), superior-inferior (SI) and left-right (LR). Each distribution was fitted to a normal (Gaussian) distribution to determine confidence limits in the center of mass and border displacements and thereby evaluate for the optimal margins needed to contain target motion. RESULTS The most common directions of displacement of the prostate center of mass (COM) were in the AP and SI directions and were significantly larger than any LR movement. The mean prostate COM displacement (+/- 1 standard deviation, SD) for the entire population was -1.2 +/- 2.9 mm, -0.5 +/- 3.3 mm and -0.6 +/- 0.8 mm in the, AP and SI and LR directions respectively (negative values indicate posterior, inferior or left displacement). The mean (+/- 1 SD) seminal vesicle COM displacement for the entire population was - 1.4 +/- 4.9 mm, 1.3 +/- 5.5 mm and -0.8 +/- 3.1 mm in the AP and SI and LR directions, respectively. The data indicate a tendency for the population towards posterior displacements of the prostate from the planning position and both posterior and superior displacements of the seminal vesicles. AP movement of both the prostate and seminal vesicles were correlated with changes in rectal volume (P = 0.0014 and < 0.0001, respectively) more than with changes in bladder volume (P = 0.030 for seminal vesicles and 0.19 for prostate). A logistic regression analysis identified the combination of rectal volume > 60 cm3 and bladder volumes > 40 cm3 as the only predictor of large ( > 3 mm) systematic deviations for the prostate and seminal vesicles (P = 0.05) defined for each patient as the difference between organ position in the planning scan and mean position as calculated from the three subsequent scans. CONCLUSIONS Prostatic displacement during a course of radiotherapy is more pronounced among patients with initial planning scans with large rectal and bladder volumes. Such patients may require more generous margins around the CTV to assure its enclosure within the prescription dose region. Identification and correction of patients with large systematic errors will minimize the extent of the margin required and decrease the volume of normal tissue exposed to higher radiation doses.


International Journal of Radiation Oncology Biology Physics | 1997

VARIATION IN PROSTATE POSITION QUANTITATION AND IMPLICATIONS FOR THREE-DIMENSIONAL CONFORMAL TREATMENT PLANNING

Edward Melian; Gig S. Mageras; Zvi Fuks; Steven A. Leibel; Anita Niehaus; Lorant Helen; Michael J. Zelefsky; Bernard Baldwin; Gerald J. Kutcher

PURPOSE This study describes and quantitates the motion, i.e., variation in position, of the prostate within the pelvis and its effect on target and normal organ dose. METHODS AND MATERIALS The motion of the planning target volume (PTV) borders and center of mass was studied in 13 patients with carcinoma of the prostate through the use of superimposed serial computerized tomography (CT) scans. Changes in bladder and rectal volumes were measured and their relationship to displacements of the PTV position were noted. The effects of this motion on target and normal organ doses were measured. RESULTS A variability in the position of the PTV is seen over time, which is related to changes in bladder and rectal volumes. The one standard deviation displacements of the PTV center of mass with respect to the planning scan center of mass position were 0.12, 0.40, and 0.31 cm in the lateral, anterior-posterior, and superior-inferior directions, respectively. Movement was significantly larger in the superior part of the PTV above the base of the bladder than in the inferior part. Movement of the borders of the PTV outward from the patient axis; hence, toward the edges of the treatment field, was also examined. Outward displacements of the anterior target border below the base of the bladder were less than 0.3 cm in 90% of the cases, and 1.4 cm above the bladder base. For the posterior wall these displacements were less than 0.7 cm and 1.1 cm, respectively, whereas the lateral border displacements were less than 0.3 cm throughout (90% confidence limits). These displacements would cause a median of 6% of the PTV to receive less than 95% of the planned dose for any given treatment day in these patients; the effect on rectal and bladder wall doses was greater and true doses may not be measurable through the use of only one treatment planning CT scan. CONCLUSIONS The prostate is not a static organ, but rather has some limited motion in the pelvis secondary to bladder and rectal volume changes. This motion has been quantified for a group of patients, and may provide a guide to further studies on the placement of field borders.


International Journal of Radiation Oncology Biology Physics | 2010

Volumetric Modulated Arc Therapy: Planning and Evaluation for Prostate Cancer Cases

Pengpeng Zhang; Laura Happersett; Margie Hunt; Andrew Jackson; Michael J. Zelefsky; Gig S. Mageras

PURPOSE To develop an optimization method using volumetric modulated arc therapy (VMAT) and evaluate VMAT plans relative to the standard intensity-modulated radiotherapy (IMRT) approach in prostate cancer. METHODS AND MATERIALS A single gantry rotation was modeled using 177 equispaced beams. Multileaf collimator apertures and dose rates were optimized with respect to gantry angle subject to dose-volume-based objectives. Our VMAT implementation used conjugate gradient descent to optimize dose rate, and stochastic sampling to find optimal multileaf collimator leaf positions. A treatment planning study of 11 prostate cancer patients with a prescription dose of 86.4 Gy was performed to compare VMAT with a standard five-field IMRT approach. Plan evaluation statistics included the percentage of planning target volume (PTV) receiving 95% of prescribed dose (V95), dose to 95% of PTV (D95), mean PTV dose, tumor control probability, and dosimetric endpoints of normal organs, whereas monitor unit (MU) and delivery time were used to assess delivery efficiency. RESULTS Patient-averaged PTV V95, D95, mean dose, and tumor control probability in VMAT plans were 96%, 82.6 Gy, 88.5 Gy, and 0.920, respectively, vs. 97%, 84.0 Gy, 88.9 Gy, and 0.929 in IMRT plans. All critical structure dose requirements were met. The VMAT plans presented better rectal wall sparing, with a reduction of 1.5% in normal tissue complication probability. An advantage of VMAT plans was that the average number of MUs (290 MU) was less than for IMRT plans (642 MU). CONCLUSION The VMAT technique can reduce beam on time by up to 55% while maintaining dosimetric quality comparable to that of the standard IMRT approach.


International Journal of Radiation Oncology Biology Physics | 1997

Measurement of patient positioning errors in three-dimensional conformal radiotherapy of the prostate.

Joseph Hanley; Moira Lumley; Gig S. Mageras; Jerry Sun; Michael J. Zelefsky; Steven A. Leibel; Zvi Fuks; Gerald J. Kutcher

PURPOSE/OBJECTIVE To determine the spatial distribution of setup errors for patients treated with six-field, three-dimensional (3D) conformal radiation therapy for prostate cancer. METHODS AND MATERIALS Port films for 50 patients were analyzed retrospectively. The port films were digitized and compared, using image registration software, to simulator films (representing the ideal treatment position). Patient positioning uncertainty for a given setup was determined using port films from three projections, two obliques, and one lateral. A total of 1239 port films and 300 simulator films were analyzed for the study. Patient position was analyzed for out-of-plane rotations and time trends over the course of treatment. RESULTS The distribution of systematic setup errors for the 50 patients, defined as the mean patient displacement for the treatment course, had a mean and standard deviation (SD) of (-0.1 +/- 1.9) mm, (0.4 +/- 1.4) mm, and (-0.3 +/- 1.3) mm in the mediolateral (ML), superior-inferior (SI) and anterior-posterior (AP) directions, and (-0.1 +/- 0.2) for rotational errors. The distribution of random setup errors about the mean approximated a normal distribution and the standard deviations for the population of patients in the ML, SI, and AP directions, were 2.0 mm, 1.7 mm, and 1.9 mm, respectively. The distribution of out-of-plane rotations had 1 SD of 0.9 degrees and 0.6 degrees about the SI and AP axes. Ten of the 50 patients demonstrated a statistically significant time trend in their setup position resulting in shifts ranging from 2 to 7 mm. CONCLUSIONS The setup verification protocol appears to minimize systematic setup errors to a level that approaches the sensitivity of the image registration technique. The random day to day fluctuations, represented by the average values of the standard deviations, are minor in comparison to the currently used margins, which further emphasizes the effectiveness of this protocol in conjunction with the use of the immobilization device.


Medical Physics | 2007

A patient-specific respiratory model of anatomical motion for radiation treatment planning

Q Zhang; Alex Pevsner; Agung Hertanto; Yu-Chi Hu; Kenneth E. Rosenzweig; C. Clifton Ling; Gig S. Mageras

The modeling of respiratory motion is important for a more accurate understanding and accounting of its effect on dose to cancers in the thorax and abdomen by radiotherapy. We have developed a model of respiration-induced organ motion in the thorax without the commonly adopted assumption of repeatable breath cycles. The model describes the motion of a volume of interest within the patient based on a reference three-dimensional (3D) image (at end expiration) and the diaphragm positions at different time points. The input data are respiration-correlated CT (RCCT) images of patients treated for non-small- cell lung cancer, consisting of 3D images, including the diaphragm positions, at ten phases of the respiratory cycle. A deformable image registration algorithm calculates the deformation field that maps each 3D image to the reference 3D image. A principal component analysis is performed to parameterize the 3D deformation field in terms of the diaphragm motion. We show that the first two principal components are adequate to accurately and completely describe the organ motion in the data of four patients. Artifacts in the RCCT images that commonly occur at the mid-respiration states are reduced in the model-generated images. Further validation of the model is demonstrated in the successful application of the parameterized 3D deformation field to RCCT data of the same patient but acquired several days later. We have developed a method for predicting respiration-induced organ motion in patients that has potential for improving the accuracy of dose calculation in radiotherapy. Possible limitations of the model are cases where the correlation between lung tumor and diaphragm position is less reliable such as superiorly situated tumors and interfraction changes in tumor-diaphragm correlation. The limited number of clinical cases examined suggests, but does not confirm, the models applicability to a wide range of patients.


Medical Physics | 2010

Correction of motion artifacts in cone-beam CT using a patient-specific respiratory motion model

Q Zhang; Yu-Chi Hu; Fenghong Liu; Karyn A. Goodman; Kenneth E. Rosenzweig; Gig S. Mageras

PURPOSE Respiratory motion adversely affects CBCT image quality and limits its localization accuracy for image-guided radiation treatment. Motion correction methods in CBCT have focused on the thorax because of its higher soft tissue contrast, whereas low-contrast tissue in abdomen remains a challenge. The authors report on a method to correct respiration-induced motion artifacts in 1 min CBCT scans that is applicable in both thorax and abdomen, using a motion model adapted to the patient from a respiration-correlated image set. METHODS Model adaptation consists of nonrigid image registration that maps each image to a reference image in the respiration-correlated set, followed by a principal component analysis to reduce errors in the nonrigid registration. The model parametrizes the deformation field in terms of observed surrogate (diaphragm or implanted marker) position and motion (inhalation or exhalation) between the images. In the thorax, the model is obtained from the same CBCT images that are to be motion-corrected, whereas in the abdomen, the model uses respiration-correlated CT (RCCT) images acquired prior to the treatment session. The CBCT acquisition is a single 360° rotation lasting 1 min, while simultaneously recording patient breathing. The approximately 600 projection images are sorted into six (in thorax) or ten (in abdomen) subsets and reconstructed to obtain a set of low-quality respiration-correlated RC-CBCT images. Application of the motion model deforms each of the RC-CBCT images to a chosen reference image in the set; combining all images yields a single high-quality CBCT image with reduced blurring and motion artifacts. Repeated application of the model with different reference images produces a series of motion-corrected CBCT images over the respiration cycle, for determining the motion extent of the tumor and nearby organs at risk. The authors also investigate a simpler correction method, which does not use PCA and correlates motion state with respiration phase, thus assuming repeatable breathing patterns. Comparison of contrast-to-noise ratios of pixel intensities within anatomical structures relative to surrounding background tissue provides a quantitative assessment of relative organ visibility. RESULTS Evaluation in lung phantom, two patient cases in thorax and two in upper abdomen, shows that blurring and streaking artifacts are visibly reduced with motion correction. The boundaries of tumors in the thorax, liver, and kidneys are sharper and more discernible. Repeat application of the method in one thorax case, with reference images chosen at end expiration and end inspiration, indicates its feasibility for observing tumor motion extent. Phase-based motion correction without PCA reduces blurring less effectively; in addition, implanted markers appear broken up, indicating inconsistencies in the phase-based correction. In structures showing 1 cm or more motion excursion, PCA-based motion correction shows the highest contrast-to-noise ratios in the cases examined. CONCLUSIONS Motion correction of CBCT is feasible and yields observable improvement in the thorax and abdomen. The PCA-based model is an important component: First, by reducing deformation errors caused by the nonrigid registration and second, by relating deformation to surrogate position rather than phase, thus accommodating breathing pattern changes between imaging sessions. The accuracy of the method requires confirmation in further patient studies.


International Journal of Radiation Oncology Biology Physics | 2008

Quality Assurance Challenges for Motion-Adaptive Radiation Therapy: Gating, Breath Holding, and Four-Dimensional Computed Tomography

S Jiang; J Wolfgang; Gig S. Mageras

Compared with conventional three-dimensional (3D) conformal radiation therapy and intensity-modulated radiation therapy treatments, quality assurance (QA) for motion-adaptive radiation therapy involves various challenges because of the added temporal dimension. Here we discuss those challenges for three specific techniques related to motion-adaptive therapy: namely respiratory gating, breath holding, and four-dimensional computed tomography. Similar to the introduction of any other new technologies in clinical practice, typical QA measures should be taken for these techniques also, including initial testing of equipment and clinical procedures, as well as frequent QA examinations during the early stage of implementation. Here, rather than covering every QA aspect in depth, we focus on some major QA challenges. The biggest QA challenge for gating and breath holding is how to ensure treatment accuracy when internal target position is predicted using external surrogates. Recommended QA measures for each component of treatment, including simulation, planning, patient positioning, and treatment delivery and verification, are discussed. For four-dimensional computed tomography, some major QA challenges have also been discussed.


Medical Physics | 2005

Effect of motion on tracer activity determination in CT attenuation corrected PET images: A lung phantom study

Alex Pevsner; Sadek A. Nehmeh; John L. Humm; Gig S. Mageras; Yusuf E. Erdi

Respiratory motion is known to affect the quantitation of FDG18 uptake in lung lesions. The aim of the study was to investigate the magnitude of errors in tracer activity determination due to motion, and its dependence upon CT attenuation at different phases of the motion cycle. To estimate these errors we have compared maximum activity concentrations determined from PET/CT images of a lung phantom at rest and under simulated respiratory motion. The NEMA 2001 IEC body phantom, containing six hollow spheres with diameters 37, 28, 22, 17, 13, and 10 mm, was used in this study. To mimic lung tissue density, the phantom (excluding spheres) was filled with low density polystyrene beads and water. The phantom spheres were filled with FDG18 solution setting the target-to-background activity concentration ratio at 8:1. PET/CT data were acquired with the phantom at rest, and while it was undergoing periodic motion along the longitudinal axis of the scanner with a range of displacement being 2 cm, and a period of 5 s. The phantom at rest and in motion was scanned using manufacturer provided standard helical/clinical protocol, a helical CT scan followed by a PET emission scan. The moving phantom was also scanned using a 4D-CT protocol that provides volume image sets at different phases of the motion cycle. To estimate the effect of motion on quantitation of activities in six spheres, we have examined the activity concentration data for (a) the stationary phantom, (b) the phantom undergoing simulated respiratory motion, and (c) a moving phantom acquired with PET/4D-CT protocol in which attenuation correction was performed with CT images acquired at different phases of motion cycle. The data for the phantom at rest and in motion acquired with the standard helical/clinical protocol showed that the activity concentration in the spheres can be underestimated by as much as 75%, depending on the sphere diameter. We have also demonstrated that fluctuations in spheres activity concentration from one PET/CT scan to another acquired with standard helical/clinical protocol can arise as a consequence of spatial mismatch between the spheres location in PET emission and the CT data.

Collaboration


Dive into the Gig S. Mageras's collaboration.

Top Co-Authors

Avatar

Ellen Yorke

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Pengpeng Zhang

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Margie Hunt

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yu-Chi Hu

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Laura Happersett

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Michael J. Zelefsky

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Andreas Rimner

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Kenneth E. Rosenzweig

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Steven A. Leibel

Radiation Therapy Oncology Group

View shared research outputs
Top Co-Authors

Avatar

Zvi Fuks

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge