Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gilles Gaudin is active.

Publication


Featured researches published by Gilles Gaudin.


Nature | 2011

Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection.

Ioan Mihai Miron; Kevin Garello; Gilles Gaudin; Pierre-Jean Zermatten; Marius V. Costache; S. Auffret; Sébastien Bandiera; B. Rodmacq; A. Schuhl; Pietro Gambardella

Modern computing technology is based on writing, storing and retrieving information encoded as magnetic bits. Although the giant magnetoresistance effect has improved the electrical read out of memory elements, magnetic writing remains the object of major research efforts. Despite several reports of methods to reverse the polarity of nanosized magnets by means of local electric fields and currents, the simple reversal of a high-coercivity, single-layer ferromagnet remains a challenge. Materials with large coercivity and perpendicular magnetic anisotropy represent the mainstay of data storage media, owing to their ability to retain a stable magnetization state over long periods of time and their amenability to miniaturization. However, the same anisotropy properties that make a material attractive for storage also make it hard to write to. Here we demonstrate switching of a perpendicularly magnetized cobalt dot driven by in-plane current injection at room temperature. Our device is composed of a thin cobalt layer with strong perpendicular anisotropy and Rashba interaction induced by asymmetric platinum and AlOx interface layers. The effective switching field is orthogonal to the direction of the magnetization and to the Rashba field. The symmetry of the switching field is consistent with the spin accumulation induced by the Rashba interaction and the spin-dependent mobility observed in non-magnetic semiconductors, as well as with the torque induced by the spin Hall effect in the platinum layer. Our measurements indicate that the switching efficiency increases with the magnetic anisotropy of the cobalt layer and the oxidation of the aluminium layer, which is uppermost, suggesting that the Rashba interaction has a key role in the reversal mechanism. To prove the potential of in-plane current switching for spintronic applications, we construct a reprogrammable magnetic switch that can be integrated into non-volatile memory and logic architectures. This device is simple, scalable and compatible with present-day magnetic recording technology.


Nature Materials | 2010

Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer

Ioan Mihai Miron; Gilles Gaudin; S. Auffret; B. Rodmacq; A. Schuhl; S. Pizzini; Jan Vogel; Pietro Gambardella

Methods to manipulate the magnetization of ferromagnets by means of local electric fields or current-induced spin transfer torque allow the design of integrated spintronic devices with reduced dimensions and energy consumption compared with conventional magnetic field actuation. An alternative way to induce a spin torque using an electric current has been proposed based on intrinsic spin-orbit magnetic fields and recently realized in a strained low-temperature ferromagnetic semiconductor. Here we demonstrate that strong magnetic fields can be induced in ferromagnetic metal films lacking structure inversion symmetry through the Rashba effect. Owing to the combination of spin-orbit and exchange interactions, we show that an electric current flowing in the plane of a Co layer with asymmetric Pt and AlO(x) interfaces produces an effective transverse magnetic field of 1 T per 10(8) A cm(-2). Besides its fundamental significance, the high efficiency of this process makes it a realistic candidate for room-temperature spintronic applications.


Nature Nanotechnology | 2013

Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures

Kevin Garello; Ioan Mihai Miron; Can Onur Avci; Frank Freimuth; Yuriy Mokrousov; Stefan Blügel; S. Auffret; Olivier Boulle; Gilles Gaudin; Pietro Gambardella

Recent demonstrations of magnetization switching induced by in-plane current injection in heavy metal/ferromagnetic heterostructures have drawn increasing attention to spin torques based on orbital-to-spin momentum transfer. The symmetry, magnitude and origin of spin-orbit torques (SOTs), however, remain a matter of debate. Here we report on the three-dimensional vector measurement of SOTs in AlOx/Co/Pt and MgO/CoFeB/Ta trilayers using harmonic analysis of the anomalous and planar Hall effects. We provide a general scheme to measure the amplitude and direction of SOTs as a function of the magnetization direction. Based on space and time inversion symmetry arguments, we demonstrate that heavy metal/ferromagnetic layers allow for two different SOTs having odd and even behaviour with respect to magnetization reversal. Such torques include strongly anisotropic field-like and spin transfer-like components, which depend on the type of heavy metal layer and annealing treatment. These results call for SOT models that go beyond the spin Hall and Rashba effects investigated thus far.


Applied Physics Letters | 2008

High domain wall velocities induced by current in ultrathin Pt/Co/AlOx wires with perpendicular magnetic anisotropy

T.A. Moore; Ioan Mihai Miron; Gilles Gaudin; G. Serret; S. Auffret; B. Rodmacq; A. Schuhl; S. Pizzini; Jan Vogel; M. Bonfim

Current-induced domain wall (DW) displacements in an array of ultrathin Pt/Co/AlOx wires with perpendicular magnetic anisotropy have been directly observed by wide field Kerr microscopy. DWs in all wires in the array were driven simultaneously and their displacement on the micrometer scale was controlled by the current pulse amplitude and duration. At the lower current densities where DW displacements were observed (j≤1.5×1012 A/m2), the DW motion obeys a creep law. At higher current density (j=1.8×1012 A/m2), zero-field average DW velocities up to 130±10 m/s were recorded.


Applied Physics Letters | 2014

Ultrafast magnetization switching by spin-orbit torques

Kevin Garello; Can Onur Avci; Ioan Mihai Miron; Manuel Baumgartner; Abhijit Ghosh; S. Auffret; Olivier Boulle; Gilles Gaudin; Pietro Gambardella

Spin-orbit torques induced by spin Hall and interfacial effects in heavy metal/ferromagnetic bilayers allow for a switching geometry based on in-plane current injection. Using this geometry, we demonstrate deterministic magnetization reversal by current pulses ranging from 180 ps to ms in Pt/Co/AlOx dots with lateral dimensions of 90 nm. We characterize the switching probability and critical current Ic as a function of pulse length, amplitude, and external field. Our data evidence two distinct regimes: a short-time intrinsic regime, where Ic scales linearly with the inverse of the pulse length, and a long-time thermally assisted regime, where Ic varies weakly. Both regimes are consistent with magnetization reversal proceeding by nucleation and fast propagation of domains. We find that Ic is a factor 3–4 smaller compared to a single domain model and that the incubation time is negligibly small, which is a hallmark feature of spin-orbit torques.


Applied Physics Letters | 2014

Spin-orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction

Murat Cubukcu; Olivier Boulle; Marc Drouard; Kevin Garello; Can Onur Avci; Ioan Mihai Miron; Juergen Langer; Berthold Ocker; Pietro Gambardella; Gilles Gaudin

We report on the current-induced magnetization switching of a three-terminal perpendicular magnetic tunnel junction by spin-orbit torque and its read-out using the tunnelling magnetoresistance (TMR) effect. The device is composed of a perpendicular Ta/FeCoB/MgO/FeCoB stack on top of a Ta current line. The magnetization of the bottom FeCoB layer can be switched reproducibly by the injection of current pulses with density 5 × 1011 A/m2 in the Ta layer in the presence of an in-plane bias magnetic field, leading to the full-scale change of the TMR signal. Our work demonstrates the proof of concept of a perpendicular spin-orbit torque magnetic memory cell.


Applied Physics Letters | 2008

Sizable room-temperature magnetoresistance in cobalt based magnetic tunnel junctions with out-of-plane anisotropy

Baptiste Carvello; C. Ducruet; B. Rodmacq; S. Auffret; Eric Gautier; Gilles Gaudin; B. Dieny

Submicron alumina based magnetic tunnel junctions (MTJs) using electrodes with out-of-plane magnetic anisotropy were prepared and characterized. Both electrodes are industry-compatible Co∕Pt multilayers. The magnetic properties of the unpatterned samples have been investigated through superconducting quantum interference device (SQUID) magnetometry and extraordinary Hall effect: both electrodes have fully out-of-plane magnetic moments and nonoverlapping coercive fields. Transport measurements on the submicron MTJs showed a magnetoresistance (MR) ratio reaching 8% at room temperature. Nanopillars with diameters of 800, 400, and 200nm patterned from the same wafer show the expected out-of-plane magnetic properties and similar resistance×area products (RA) and MR ratios. The I(V) characteristics of pillars with diameters of 800 and 400nm could be accounted for with reasonable barrier heights and widths.


Physical Review Letters | 2013

Domain wall tilting in the presence of the Dzyaloshinskii-Moriya interaction in out-of-plane magnetized magnetic nanotracks

Olivier Boulle; Stanislas Rohart; L. D. Buda-Prejbeanu; Emilie Jué; Ioan Mihai Miron; S. Pizzini; Jan Vogel; Gilles Gaudin; A. Thiaville

We show that the Dzyaloshinskii-Moriya interaction (DMI) can lead to a tilting of the domain wall (DW) surface in perpendicularly magnetized magnetic nanotracks when DW dynamics are driven by an easy axis magnetic field or a spin polarized current. The DW tilting affects the DW dynamics for large DMI, and the tilting relaxation time can be very large as it scales with the square of the track width. The results are well explained by an extended collective coordinate model where DMI and DW tilting are included. We propose a simple way to estimate the DMI in magnetic multilayers by measuring the dependence of the DW tilt angle on a transverse static magnetic field. These results shed light on the current induced DW tilting observed recently in Co/Ni multilayers with structural inversion asymmetry.


Physical Review Letters | 2014

Chirality-induced asymmetric magnetic nucleation in Pt/Co/AlOx ultrathin microstructures

S. Pizzini; Jan Vogel; Stanislas Rohart; L. D. Buda-Prejbeanu; Émilie Jué; Olivier Boulle; Ioan Mihai Miron; Safeer Ck; S. Auffret; Gilles Gaudin; A. Thiaville

The nucleation of reversed magnetic domains in Pt/Co/AlO(x) microstructures with perpendicular anisotropy was studied experimentally in the presence of an in-plane magnetic field. For large enough in-plane field, nucleation was observed preferentially at an edge of the sample normal to this field. The position at which nucleation takes place was observed to depend in a chiral way on the initial magnetization and applied field directions. A quantitative explanation of these results is proposed, based on the existence of a sizable Dzyaloshinskii-Moriya interaction in this sample. Another consequence of this interaction is that the energy of domain walls can become negative for in-plane fields smaller than the effective anisotropy field.


Nature Communications | 2015

The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry.

Jean-Philippe Tetienne; T. Hingant; L. J. Martínez; Stanislas Rohart; A. Thiaville; L. Herrera Diez; K. Garcia; Jean-Paul Adam; Joo-Von Kim; Jean-François Roch; Ioan Mihai Miron; Gilles Gaudin; Laurent Vila; Berthold Ocker; D. Ravelosona; V. Jacques

The capacity to propagate magnetic domain walls with spin-polarized currents underpins several schemes for information storage and processing using spintronic devices. A key question involves the internal structure of the domain walls, which governs their response to certain current-driven torques such as the spin Hall effect. Here we show that magnetic microscopy based on a single nitrogen-vacancy defect in diamond can provide a direct determination of the internal wall structure in ultrathin ferromagnetic films under ambient conditions. We find pure Bloch walls in Ta/CoFeB(1 nm)/MgO, while left-handed Néel walls are observed in Pt/Co(0.6 nm)/AlOx. The latter indicates the presence of a sizable interfacial Dzyaloshinskii-Moriya interaction, which has strong bearing on the feasibility of exploiting novel chiral states such as skyrmions for information technologies.

Collaboration


Dive into the Gilles Gaudin's collaboration.

Top Co-Authors

Avatar

Olivier Boulle

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

S. Auffret

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Ioan Mihai Miron

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jan Vogel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

S. Pizzini

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

B. Rodmacq

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

A. Schuhl

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

L. D. Buda-Prejbeanu

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge