Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gillian Douglas is active.

Publication


Featured researches published by Gillian Douglas.


Cardiovascular Research | 2012

Endothelial-specific Nox2 overexpression increases vascular superoxide and macrophage recruitment in ApoE−/− mice

Gillian Douglas; Jennifer K. Bendall; Mark J. Crabtree; Amy L. Tatham; Emma E. Carter; Ashley B. Hale; Keith M. Channon

Aims Vascular disease states are associated with endothelial dysfunction and increased production of reactive oxygen species derived from NADPH oxidases. However, it remains unclear whether a primary increase in superoxide production specifically in the endothelium alters the initiation or progression of atherosclerosis. Methods and results Mice overexpressing Nox2 specifically in the endothelium (Nox2-Tg) were crossed with ApoE−/− mice to produce Nox2-Tg ApoE−/− mice and ApoE−/− littermates. Endothelial overexpression of Nox2 in ApoE−/− mice did not alter blood pressure, but significantly increased vascular superoxide production compared with ApoE−/− littermates, measured using both lucigenin chemiluminescence and 2-hydroxyethidium production (ApoE−/−, 19.9 ± 6.3 vs. Nox2-Tg ApoE−/−, 47.0 ± 7.0 nmol 2-hydroxyethidium/aorta, P< 0.05). Increased endothelial superoxide production increased endothelial levels of vascular cell adhesion protein 1 and enhanced macrophage recruitment in early lesions in the aortic roots of 9-week-old mice, indicating increased atherosclerotic plaque initiation. However, endothelial-specific Nox2 overexpression did not alter native or angiotensin II-driven atherosclerosis in either the aortic root or the descending aorta. Conclusion Endothelial-targeted Nox2 overexpression in ApoE−/− mice is sufficient to increase vascular superoxide production and increase macrophage recruitment possible via activation of endothelial cells. However, this initial increase in macrophage recruitment did not alter the progression of atherosclerosis. These results indicate that Nox-mediated reactive oxygen species signalling has important cell-specific and distinct temporal roles in the initiation and progression of atherosclerosis.


European Heart Journal | 2013

Endothelial cell repopulation after stenting determines in-stent neointima formation: effects of bare-metal vs. drug-eluting stents and genetic endothelial cell modification.

Gillian Douglas; Erik Van Kampen; Ashley B. Hale; Eileen McNeill; Jyoti Patel; Mark J. Crabtree; Ziad Ali; Robert A. Hoerr; N J Alp; Keith M. Channon

Aims Understanding endothelial cell repopulation post-stenting and how this modulates in-stent restenosis is critical to improving arterial healing post-stenting. We used a novel murine stent model to investigate endothelial cell repopulation post-stenting, comparing the response of drug-eluting stents with a primary genetic modification to improve endothelial cell function. Methods and results Endothelial cell repopulation was assessed en face in stented arteries in ApoE−/− mice with endothelial-specific LacZ expression. Stent deployment resulted in near-complete denudation of endothelium, but was followed by endothelial cell repopulation, by cells originating from both bone marrow-derived endothelial progenitor cells and from the adjacent vasculature. Paclitaxel-eluting stents reduced neointima formation (0.423 ± 0.065 vs. 0.240 ± 0.040 mm2, P = 0.038), but decreased endothelial cell repopulation (238 ± 17 vs. 154 ± 22 nuclei/mm2, P = 0.018), despite complete strut coverage. To test the effects of selectively improving endothelial cell function, we used transgenic mice with endothelial-specific overexpression of GTP-cyclohydrolase 1 (GCH-Tg) as a model of enhanced endothelial cell function and increased NO production. GCH-Tg ApoE−/− mice had less neointima formation compared with ApoE−/− littermates (0.52 ± 0.08 vs. 0.26 ± 0.09 mm2, P = 0.039). In contrast to paclitaxel-eluting stents, reduced neointima formation in GCH-Tg mice was accompanied by increased endothelial cell coverage (156 ± 17 vs. 209 ± 23 nuclei/mm2, P = 0.043). Conclusion Drug-eluting stents reduce not only neointima formation but also endothelial cell repopulation, independent of strut coverage. In contrast, selective targeting of endothelial cell function is sufficient to improve endothelial cell repopulation and reduce neointima formation. Targeting endothelial cell function is a rational therapeutic strategy to improve vascular healing and decrease neointima formation after stenting.


Circulation | 2014

Endothelial Cell-Specific ROS Production Increases Susceptibility to Aortic Dissection

Lampson M. Fan; Gillian Douglas; Jennifer K. Bendall; Eileen McNeill; Mark J. Crabtree; Ashley B. Hale; Anna Mai; Jian-Mei Li; Martina A. McAteer; Jurgen E. Schneider; Robin P. Choudhury; Keith M. Channon

Background— Increased production of reactive oxygen species (ROS) throughout the vascular wall is a feature of cardiovascular disease states, but therapeutic strategies remain limited by our incomplete understanding of the role and contribution of specific vascular cell ROS to disease pathogenesis. To investigate the specific role of endothelial cell (EC) ROS in the development of structural vascular disease, we generated a mouse model of endothelium-specific Nox2 overexpression and tested the susceptibility to aortic dissection after angiotensin II (Ang II) infusion. Methods and Results— A specific increase in endothelial ROS production in Nox2 transgenic mice was sufficient to cause Ang II–mediated aortic dissection, which was never observed in wild-type mice. Nox2 transgenic aortas had increased endothelial ROS production, endothelial vascular cell adhesion molecule-1 expression, matrix metalloproteinase activity, and CD45+ inflammatory cell infiltration. Conditioned media from Nox2 transgenic ECs induced greater Erk1/2 phosphorylation in vascular smooth muscle cells compared with wild-type controls through secreted cyclophilin A (CypA). Nox2 transgenic ECs (but not vascular smooth muscle cells) and aortas had greater secretion of CypA both at baseline and in response to Ang II stimulation. Knockdown of CypA in ECs abolished the increase in vascular smooth muscle cell Erk1/2 phosphorylation conferred by EC conditioned media, and preincubation with CypA augmented Ang II–induced vascular smooth muscle cell ROS production. Conclusions— These findings demonstrate a pivotal role for EC-derived ROS in the determination of the susceptibility of the aortic wall to Ang II–mediated aortic dissection. ROS-dependent CypA secretion by ECs is an important signaling mechanism through which EC ROS regulate susceptibility of structural components of the aortic wall to aortic dissection.


Hypertension | 2014

Cell-Autonomous Role of Endothelial GTP Cyclohydrolase 1 and Tetrahydrobiopterin in Blood Pressure Regulation

Surawee Chuaiphichai; Eileen McNeill; Gillian Douglas; Mark J. Crabtree; Jennifer K. Bendall; Ashley B. Hale; Nicholas J. Alp; Keith M. Channon

Tetrahydrobiopterin (BH4) is an essential cofactor for endothelial nitric oxide synthase (eNOS) function and NO generation. Augmentation of BH4 levels can prevent eNOS uncoupling and can improve endothelial dysfunction in vascular disease states. However, the physiological requirement for de novo endothelial cell BH4 biosynthesis in eNOS function remains unclear. We generated a novel mouse model with endothelial cell–specific deletion of GCH1, encoding GTP cyclohydrolase 1, an essential enzyme for BH4 biosynthesis, to test the cell-autonomous requirement for endothelial BH4 biosynthesis in vivo. Mice with a floxed GCH1 allele (GCH1fl/fl) were crossed with Tie2cre mice to delete GCH1 in endothelial cells. GCH1fl/flTie2cre mice demonstrated virtually absent endothelial NO bioactivity and significantly greater O2•– production. GCH1fl/flTie2cre aortas and mesenteric arteries had enhanced vasoconstriction to phenylephrine and impaired endothelium-dependent vasodilatations to acetylcholine and SLIGRL. Endothelium-dependent vasodilatations in GCH1fl/flTie2cre aortas were, in part, mediated by eNOS-derived hydrogen peroxide (H2O2), which mediated vasodilatation through soluble guanylate cyclase. Ex vivo supplementation of aortic rings with the BH4 analogue sepiapterin restored normal endothelial function and abolished eNOS-derived H2O2 production in GCH1fl/flTie2cre aortas. GCH1fl/flTie2cre mice had higher systemic blood pressure than wild-type littermates, which was normalized by NOS inhibitor, NG-nitro-L-arginine methyl ester. Taken together, these studies reveal an endothelial cell-autonomous requirement for GCH1 and BH4 in regulation of vascular tone and blood pressure and identify endothelial cell BH4 as a pivotal regulator of NO versus H2O2 as alternative eNOS-derived endothelial-derived relaxing factors.


Atherosclerosis | 2011

Molecular imaging with optical coherence tomography using ligand-conjugated microparticles that detect activated endothelial cells: Rational design through target quantification

Andrew Jefferson; Rohan S. Wijesurendra; Martina A. McAteer; J Digby; Gillian Douglas; Thomas Bannister; Francisco Perez-Balderas; Zsolt Bagi; Alistair C. Lindsay; Robin P. Choudhury

Objectives Optical coherence tomography (OCT) is a high resolution imaging technique used to assess superficial atherosclerotic plaque morphology. Utility of OCT may be enhanced by contrast agents targeting molecular mediators of inflammation. Methods and results Microparticles of iron oxide (MPIO; 1 and 4.5 μm diameter) in suspension were visualized and accurately quantified using a clinical optical coherence tomography system. Bound to PECAM-1 on a plane of cultured endothelial cells under static conditions, 1 μm MPIO were also readily detected by OCT. To design a molecular contrast probe that would bind activated endothelium under conditions of shear stress, we quantified the expression (basal vs. TNF-activated; molecules μm−2) of VCAM-1 (not detected vs. 16 ± 1); PECAM-1 (132 ± 6 vs. 198 ± 10) and E-selectin (not detected vs. 46 ± 0.6) using quantitative flow cytometry. We then compared the retention of antibody-conjugated MPIO targeting each of these molecules plus a combined VCAM-1 and E-selectin (E + V) probe across a range of physiologically relevant shear stresses. E + V MPIO were consistently retained with highest efficiency (P < 0.001) and at a density that provided conspicuous contrast effects on OCT pullback. Conclusion Microparticles of iron oxide were detectable using a clinical OCT system. Assessment of binding under flow conditions recommended an approach that targeted both E-selectin and VCAM-1. Bound to HUVEC under conditions of flow, targeted 1 μm E + V MPIO were readily identified on OCT pullback. Molecular imaging with OCT may be feasible in vivo using antibody targeted MPIO.


Clinical Science | 2010

Tetrahydrobiopterin supplementation reduces atherosclerosis and vascular inflammation in apolipoprotein E-knockout mice

Tim S. Schmidt; Eileen McNeill; Gillian Douglas; Mark J. Crabtree; Ashley B. Hale; Jeffrey Khoo; Charles A. O'Neill; Alphonsus Cheng; Keith M. Channon; Nicholas J. Alp

BH4 (tetrahydrobiopterin) supplementation improves endothelial function in models of vascular disease by maintaining eNOS (endothelial nitric oxide synthase) coupling and NO (nitric oxide) bioavailability. However, the cellular mechanisms through which enhanced endothelial function leads to reduced atherosclerosis remain unclear. We have used a pharmaceutical BH4 formulation to investigate the effects of BH4 supplementation on atherosclerosis progression in ApoE-KO (apolipoprotein E-knockout) mice. Single oral dose pharmacokinetic studies revealed rapid BH4 uptake into plasma and organs. Plasma BH4 levels returned to baseline by 8 h after oral dosing, but remained markedly increased in aorta at 24 h. Daily oral BH4 supplementation in ApoE-KO mice from 8 weeks of age, for a period of 8 or 12 weeks, had no effect on plasma lipids or haemodynamic parameters, but significantly reduced aortic root atherosclerosis compared with placebo-treated animals. BH4 supplementation significantly reduced VCAM-1 (vascular cell adhesion molecule 1) mRNA levels in aortic endothelial cells, markedly reduced the infiltration of T-cells, macrophages and monocytes into plaques, and reduced T-cell infiltration in the adjacent adventitia, but importantly had no effect on circulating leucocytes. GCH (GTP cyclohydrolase I)-transgenic mice, with a specific increase in endothelial BH4 levels, exhibited a similar reduction in vascular immune cell infiltration compared with BH4-deficient controls, suggesting that BH4 reduces vascular inflammation via endothelial cell signalling. In conclusion, BH4 supplementation reduces vascular immune cell infiltration in atherosclerosis and may therefore be a rational therapeutic approach to reduce the progression of atherosclerosis.


Cardiovascular Research | 2011

Enhanced K+-channel-mediated endothelium-dependent local and conducted dilation of small mesenteric arteries from ApoE−/− mice

Timea Beleznai; Hiromichi Takano; Claire Hamill; Polina Yarova; Gillian Douglas; Keith M. Channon; Kim A. Dora

AIMS Agonists that evoke smooth muscle cell hyperpolarization have the potential to stimulate both local and conducted dilation. We investigated whether the endothelium-dependent vasodilators acetylcholine (ACh) and SLIGRL stimulated conducted dilation and whether this was altered by deficiency in apolipoprotein E (ApoE(-/-)). METHODS AND RESULTS Isolated mesenteric arteries were cannulated, pressurized, and precontracted with phenylephrine. Agonists were either added to the bath to study local dilation or were restricted to one end of arteries to study conducted dilation. An enhanced sensitivity to both ACh and SLIGRL was observed in mesenteric arteries from ApoE(-/-) mice compared with wild-type controls. Inhibition of nitric oxide (NO) synthase blocked ACh responses, but had no effect on maximum dilation to SLIGRL. SLIGRL increased endothelial cell Ca(2+), hyperpolarized smooth muscle cells, and fully dilated arteries. The NO-independent dilation to SLIGRL was blocked with high [KCl] or Ca(2+)-activated K(+)-channel blockers. The hyperpolarization and dilation to SLIGRL passed through the artery to at least 2.5 mm upstream. The conducted dilation was not affected by a deficit in ApoE and could also be stimulated by ACh, suggesting NO itself could stimulate conducted dilation. CONCLUSION In small mesenteric arteries of ApoE(-/-) mice, NO-independent dilation is enhanced. Since both NO-dependent and -independent pathways can stimulate local and conducted dilation, the potential for reducing vascular resistance is improved in these vessels.


Nature Communications | 2015

RGS1 regulates myeloid cell accumulation in atherosclerosis and aortic aneurysm rupture through altered chemokine signalling

Jyoti Patel; Eileen McNeill; Gillian Douglas; Ashley B. Hale; J de Bono; Regent Lee; Asif J. Iqbal; D. Regan-Komito; E. Stylianou; David R. Greaves; Keith M. Channon

Chemokine signalling drives monocyte recruitment in atherosclerosis and aortic aneurysms. The mechanisms that lead to retention and accumulation of macrophages in the vascular wall remain unclear. Regulator of G-Protein Signalling-1 (RGS1) deactivates G-protein signalling, reducing the response to sustained chemokine stimulation. Here we show that Rgs1 is upregulated in atherosclerotic plaque and aortic aneurysms. Rgs1 reduces macrophage chemotaxis and desensitizes chemokine receptor signalling. In early atherosclerotic lesions, Rgs1 regulates macrophage accumulation and is required for the formation and rupture of Angiotensin II-induced aortic aneurysms, through effects on leukocyte retention. Collectively, these data reveal a role for Rgs1 in leukocyte trafficking and vascular inflammation and identify Rgs1, and inhibition of chemokine receptor signalling as potential therapeutic targets in vascular disease.


Cardiovascular Research | 2012

Regulation of β-adrenergic control of heart rate by GTP-cyclohydrolase 1 (GCH1) and tetrahydrobiopterin

David Adlam; Neil Herring; Gillian Douglas; J P De Bono; Dan Li; E.J.F. Danson; Amy L. Tatham; Lu C-J.; K A Jennings; S J Cragg; Barbara Casadei; David J. Paterson; Keith M. Channon

AIMS Clinical markers of cardiac autonomic function, such as heart rate and response to exercise, are important predictors of cardiovascular risk. Tetrahydrobiopterin (BH4) is a required cofactor for enzymes with roles in cardiac autonomic function, including tyrosine hydroxylase and nitric oxide synthase. Synthesis of BH4 is regulated by GTP cyclohydrolase I (GTPCH), encoded by GCH1. Recent clinical studies report associations between GCH1 variants and increased heart rate, but the mechanistic importance of GCH1 and BH4 in autonomic function remains unclear. We investigate the effect of BH4 deficiency on the autonomic regulation of heart rate in the hph-1 mouse model of BH4 deficiency. METHODS AND RESULTS In the hph-1 mouse, reduced cardiac GCH1 expression, GTPCH enzymatic activity, and BH4 were associated with increased resting heart rate; blood pressure was not different. Exercise training decreased resting heart rate, but hph-1 mice retained a relative tachycardia. Vagal nerve stimulation in vitro induced bradycardia equally in hph-1 and wild-type mice both before and after exercise training. Direct atrial responses to carbamylcholine were equal. In contrast, propranolol treatment normalized the resting tachycardia in vivo. Stellate ganglion stimulation and isoproterenol but not forskolin application in vitro induced a greater tachycardic response in hph-1 mice. β1-adrenoceptor protein was increased as was the cAMP response to isoproterenol stimulation. CONCLUSION Reduced GCH1 expression and BH4 deficiency cause tachycardia through enhanced β-adrenergic sensitivity, with no effect on vagal function. GCH1 expression and BH4 are novel determinants of cardiac autonomic regulation that may have important roles in cardiovascular pathophysiology.


British Journal of Pharmacology | 2017

A key role for tetrahydrobiopterin-dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin-deficient mice

Surawee Chuaiphichai; Mark J. Crabtree; Eileen McNeill; Ashley B. Hale; Lucy Trelfa; Keith M. Channon; Gillian Douglas

The cofactor tetrahydrobiopterin (BH4) is a critical regulator of endothelial NOS (eNOS) function, eNOS‐derived NO and ROS signalling in vascular physiology. To determine the physiological requirement for de novo endothelial cell BH4 synthesis for the vasomotor function of resistance arteries, we have generated a mouse model with endothelial cell‐specific deletion of Gch1, encoding GTP cyclohydrolase 1 (GTPCH), an essential enzyme for BH4 biosynthesis, and evaluated BH4‐dependent eNOS regulation, eNOS‐derived NO and ROS generation.

Collaboration


Dive into the Gillian Douglas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashley B. Hale

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar

Eileen McNeill

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge