Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Surawee Chuaiphichai is active.

Publication


Featured researches published by Surawee Chuaiphichai.


Free Radical Biology and Medicine | 2015

Regulation of iNOS function and cellular redox state by macrophage Gch1 reveals specific requirements for tetrahydrobiopterin in NRF2 activation

Eileen McNeill; Mark J. Crabtree; Natasha Sahgal; Jyoti Patel; Surawee Chuaiphichai; Asif J. Iqbal; Ashley B. Hale; David R. Greaves; Keith M. Channon

Inducible nitric oxide synthase (iNOS) is a key enzyme in the macrophage inflammatory response, which is the source of nitric oxide (NO) that is potently induced in response to proinflammatory stimuli. However, the specific role of NO production, as distinct from iNOS induction, in macrophage inflammatory responses remains unproven. We have generated a novel mouse model with conditional deletion of Gch1, encoding GTP cyclohydrolase 1 (GTPCH), an essential enzyme in the biosynthesis of tetrahydrobiopterin (BH4) that is a required cofactor for iNOS NO production. Mice with a floxed Gch1 allele (Gch1fl/fl) were crossed with Tie2cre transgenic mice, causing Gch1 deletion in leukocytes (Gch1fl/flTie2cre). Macrophages from Gch1fl/flTie2cre mice lacked GTPCH protein and de novo biopterin biosynthesis. When activated with LPS and IFNγ, macrophages from Gch1fl/flTie2cre mice induced iNOS protein in a manner indistinguishable from wild-type controls, but produced no detectable NO, as judged by L-citrulline production, EPR spin trapping of NO, and by nitrite accumulation. Incubation of Gch1fl/flTie2cre macrophages with dihydroethidium revealed significantly increased production of superoxide in the presence of iNOS expression, and an iNOS-independent, BH4-dependent increase in other ROS species. Normal BH4 levels, nitric oxide production, and cellular redox state were restored by sepiapterin, a precursor of BH4 production by the salvage pathway, demonstrating that the effects of BH4 deficiency were reversible. Gch1fl/flTie2cre macrophages showed only minor alterations in cytokine production and normal cell migration, and minimal changes in basal gene expression. However, gene expression analysis after iNOS induction identified 78 genes that were altered between wild-type and Gch1fl/flTie2cre macrophages. Pathway analysis identified decreased NRF2 activation, with reduced induction of archetypal NRF2 genes (gclm, prdx1, gsta3, nqo1, and catalase) in BH4-deficient Gch1fl/flTie2cre macrophages. These findings identify BH4-dependent iNOS regulation and NO generation as specific requirements for NRF2-dependent responses in macrophage inflammatory activation.


Hypertension | 2014

Cell-Autonomous Role of Endothelial GTP Cyclohydrolase 1 and Tetrahydrobiopterin in Blood Pressure Regulation

Surawee Chuaiphichai; Eileen McNeill; Gillian Douglas; Mark J. Crabtree; Jennifer K. Bendall; Ashley B. Hale; Nicholas J. Alp; Keith M. Channon

Tetrahydrobiopterin (BH4) is an essential cofactor for endothelial nitric oxide synthase (eNOS) function and NO generation. Augmentation of BH4 levels can prevent eNOS uncoupling and can improve endothelial dysfunction in vascular disease states. However, the physiological requirement for de novo endothelial cell BH4 biosynthesis in eNOS function remains unclear. We generated a novel mouse model with endothelial cell–specific deletion of GCH1, encoding GTP cyclohydrolase 1, an essential enzyme for BH4 biosynthesis, to test the cell-autonomous requirement for endothelial BH4 biosynthesis in vivo. Mice with a floxed GCH1 allele (GCH1fl/fl) were crossed with Tie2cre mice to delete GCH1 in endothelial cells. GCH1fl/flTie2cre mice demonstrated virtually absent endothelial NO bioactivity and significantly greater O2•– production. GCH1fl/flTie2cre aortas and mesenteric arteries had enhanced vasoconstriction to phenylephrine and impaired endothelium-dependent vasodilatations to acetylcholine and SLIGRL. Endothelium-dependent vasodilatations in GCH1fl/flTie2cre aortas were, in part, mediated by eNOS-derived hydrogen peroxide (H2O2), which mediated vasodilatation through soluble guanylate cyclase. Ex vivo supplementation of aortic rings with the BH4 analogue sepiapterin restored normal endothelial function and abolished eNOS-derived H2O2 production in GCH1fl/flTie2cre aortas. GCH1fl/flTie2cre mice had higher systemic blood pressure than wild-type littermates, which was normalized by NOS inhibitor, NG-nitro-L-arginine methyl ester. Taken together, these studies reveal an endothelial cell-autonomous requirement for GCH1 and BH4 in regulation of vascular tone and blood pressure and identify endothelial cell BH4 as a pivotal regulator of NO versus H2O2 as alternative eNOS-derived endothelial-derived relaxing factors.


Neuron | 2015

Reduction of Neuropathic and Inflammatory Pain through Inhibition of the Tetrahydrobiopterin Pathway.

Alban Latremoliere; Alexandra Latini; Nick Andrews; Shane J. Cronin; Masahide Fujita; Katarzyna Irena Gorska; Ruud Hovius; Carla Romero; Surawee Chuaiphichai; Michio W. Painter; Giulia Miracca; Olusegun Babaniyi; Aline Pertile Remor; Kelly Duong; Priscilla Riva; Lee B. Barrett; Nerea Ferreirós; Alasdair Naylor; Josef M. Penninger; Irmgard Tegeder; Jian Zhong; Julian Blagg; Keith M. Channon; Kai Johnsson; Michael Costigan; Clifford J. Woolf

Human genetic studies have revealed an association between GTP cyclohydrolase 1 polymorphisms, which decrease tetrahydrobiopterin (BH4) levels, and reduced pain in patients. We now show that excessive BH4 is produced in mice by both axotomized sensory neurons and macrophages infiltrating damaged nerves and inflamed tissue. Constitutive BH4 overproduction in sensory neurons increases pain sensitivity, whereas blocking BH4 production only in these cells reduces nerve injury-induced hypersensitivity without affecting nociceptive pain. To minimize risk of side effects, we targeted sepiapterin reductase (SPR), whose blockade allows minimal BH4 production through the BH4 salvage pathways. Using a structure-based design, we developed a potent SPR inhibitor and show that it reduces pain hypersensitivity effectively with a concomitant decrease in BH4 levels in target tissues, acting both on sensory neurons and macrophages, with no development of tolerance or adverse effects. Finally, we demonstrate that sepiapterin accumulation is a sensitive biomarker for SPR inhibition in vivo.


Journal of Biological Chemistry | 2013

A Pivotal Role for Tryptophan 447 in Enzymatic Coupling of Human Endothelial Nitric Oxide Synthase (eNOS): Effects on Tetrahydrobiopterin-Dependent Catalysis and eNOS Dimerization

Matthew A. Benson; Helen Batchelor; Surawee Chuaiphichai; Jade Bailey; Hanneng Zhu; Dennis J. Stuehr; Shoumo Bhattacharya; Keith M. Channon; Mark J. Crabtree

Background: Interaction of tetrahydrobiopterin (BH4) with a key tryptophan residue in the NOS active site is critical for activity. Results: Mutation of tryptophan 447 causes eNOS uncoupling and monomerization. Conclusion: Tryptophan 447 determines enzymatic coupling of human eNOS. Significance: The development of BH4-based strategies to restore NOS function must consider the structural effects of BH4 binding and their role in NOS coupling. Tetrahydrobiopterin (BH4) is a required cofactor for the synthesis of NO by NOS. Bioavailability of BH4 is a critical factor in regulating the balance between NO and superoxide production by endothelial NOS (eNOS coupling). Crystal structures of the mouse inducible NOS oxygenase domain reveal a homologous BH4-binding site located in the dimer interface and a conserved tryptophan residue that engages in hydrogen bonding or aromatic stacking interactions with the BH4 ring. The role of this residue in eNOS coupling remains unexplored. We overexpressed human eNOS W447A and W447F mutants in novel cell lines with tetracycline-regulated expression of human GTP cyclohydrolase I, the rate-limiting enzyme in BH4 synthesis, to determine the importance of BH4 and Trp-447 in eNOS uncoupling. NO production was abolished in eNOS-W447A cells and diminished in cells expressing W447F, despite high BH4 levels. eNOS-derived superoxide production was significantly elevated in W447A and W447F versus wild-type eNOS, and this was sufficient to oxidize BH4 to 7,8-dihydrobiopterin. In uncoupled, BH4-deficient cells, the deleterious effects of W447A mutation were greatly exacerbated, resulting in further attenuation of NO and greatly increased superoxide production. eNOS dimerization was attenuated in W447A eNOS cells and further reduced in BH4-deficient cells, as demonstrated using a novel split Renilla luciferase biosensor. Reduction of cellular BH4 levels resulted in a switch from an eNOS dimer to an eNOS monomer. These data reveal a key role for Trp-447 in determining NO versus superoxide production by eNOS, by effects on BH4-dependent catalysis, and by modulating eNOS dimer formation.


British Journal of Pharmacology | 2017

A key role for tetrahydrobiopterin-dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin-deficient mice

Surawee Chuaiphichai; Mark J. Crabtree; Eileen McNeill; Ashley B. Hale; Lucy Trelfa; Keith M. Channon; Gillian Douglas

The cofactor tetrahydrobiopterin (BH4) is a critical regulator of endothelial NOS (eNOS) function, eNOS‐derived NO and ROS signalling in vascular physiology. To determine the physiological requirement for de novo endothelial cell BH4 synthesis for the vasomotor function of resistance arteries, we have generated a mouse model with endothelial cell‐specific deletion of Gch1, encoding GTP cyclohydrolase 1 (GTPCH), an essential enzyme for BH4 biosynthesis, and evaluated BH4‐dependent eNOS regulation, eNOS‐derived NO and ROS generation.


Vascular Pharmacology | 2016

Endothelial cell tetrahydrobiopterin deficiency attenuates LPS-induced vascular dysfunction and hypotension☆

Surawee Chuaiphichai; Anna Starr; Manasi Nandi; Keith M. Channon; Eileen McNeill

Overproduction of nitric oxide (NO) is thought to be a key mediator of the vascular dysfunction and severe hypotension in patients with endotoxaemia and septic shock. The contribution of NO produced directly in the vasculature by endothelial cells to the hypotension seen in these conditions, vs. the broader systemic increase in NO, is unclear. To determine the specific role of endothelium derived NO in lipopolysaccharide (LPS)-induced vascular dysfunction we administered LPS to mice deficient in endothelial cell tetrahydrobiopterin (BH4), the essential co-factor for NO production by NOS enzymes. Mice deficient in endothelial BH4 production, through loss of the essential biosynthesis enzyme Gch1 (Gch1fl/flTie2cre mice) received a 24 hour challenge with LPS or saline control. In vivo LPS treatment increased vascular GTP cyclohydrolase and BH4 levels in aortas, lungs and hearts, but this increase was significantly attenuated in Gch1fl/flTie2cre mice, which were also partially protected from the LPS-induced hypotension. In isometric tension studies, in vivo LPS treatment reduced the vasoconstriction response and impaired endothelium-dependent and independent vasodilatations in mesenteric arteries from wild-type mice, but not in Gch1fl/flTie2cre mesenteric arteries. Ex vivo LPS treatment decreased vasoconstriction response to phenylephrine in aortic rings from wild-type and not in Gch1fl/flTie2cre mice, even in the context of significant eNOS and iNOS upregulation. These data provide direct evidence that endothelial cell NO has a significant contribution to LPS-induced vascular dysfunction and hypotension and may provide a novel therapeutic target for the treatment of systemic inflammation and patients with septic shock.


Cardiovascular Research | 2018

Roles for Endothelial Cell and Macrophage Gch1 and Tetrahydrobiopterin in Atherosclerosis Progression.

Gillian Douglas; Ashley B. Hale; Jyoti Patel; Surawee Chuaiphichai; Ayman Al Haj Zen; Victoria S. Rashbrook; Lucy Trelfa; Mark J. Crabtree; Eileen McNeill; Keith M. Channon

Abstract Aims GTP cyclohydrolase I catalyses the first and rate-limiting reaction in the synthesis of tetrahydrobiopterin (BH4), an essential cofactor for nitric oxide synthases (NOS). Both eNOS and iNOS have been implicated in the progression of atherosclerosis, with opposing effects in eNOS and iNOS knockout mice. However, the pathophysiologic requirement for BH4 in regulating both eNOS and iNOS function, and the effects of loss of BH4 on the progression of atherosclerosis remains unknown. Methods and results Hyperlipidemic mice deficient in Gch1 in endothelial cells and leucocytes were generated by crossing Gch1fl/flTie2cre mice with ApoE–/– mice. Deficiency of Gch1 and BH4 in endothelial cells and myeloid cells was associated with mildly increased blood pressure. High fat feeding for 6u2009weeks in Gch1fl/flTie2CreApoE–/– mice resulted in significantly decreased circulating BH4 levels, increased atherosclerosis burden and increased plaque macrophage content. Gch1fl/flTie2CreApoE–/– mice showed hallmarks of endothelial cell dysfunction, with increased aortic VCAM-1 expression and decreased endothelial cell dependent vasodilation. Furthermore, loss of BH4 from pro-inflammatory macrophages resulted in increased foam cell formation and altered cellular redox signalling, with decreased expression of antioxidant genes and increased reactive oxygen species. Bone marrow chimeras revealed that loss of Gch1 in both endothelial cells and leucocytes is required to accelerate atherosclerosis. Conclusion Both endothelial cell and macrophage BH4 play important roles in the regulation of NOS function and cellular redox signalling in atherosclerosis.


PLOS ONE | 2014

Crucial Role for Neuronal Nitric Oxide Synthase in Early Microcirculatory Derangement and Recipient Survival following Murine Pancreas Transplantation

Benno Cardini; Katrin Watschinger; Martin Hermann; Peter Obrist; Rupert Oberhuber; Gerald Brandacher; Surawee Chuaiphichai; Keith M. Channon; Johann Pratschke; Manuel Maglione; Ernst R. Werner

Objective Aim of this study was to identify the nitric oxide synthase (NOS) isoform involved in early microcirculatory derangements following solid organ transplantation. Background Tetrahydrobiopterin donor treatment has been shown to specifically attenuate these derangements following pancreas transplantation, and tetrahydrobiopterin-mediated protective effects to rely on its NOS-cofactor activity, rather than on its antioxidant capacity. However, the NOS-isoform mainly involved in this process has still to be defined. Methods Using a murine pancreas transplantation model, grafts lacking one of the three NOS-isoforms were compared to grafts from wild-type controls. Donors were treated with either tetrahydrobiopterin or remained untreated. All grafts were subjected to 16 h cold ischemia time and transplanted into wild-type recipients. Following 4 h graft reperfusion, microcirculation was analysed by confocal intravital fluorescence microscopy. Recipient survival was monitored for 50 days. Results Transplantation of the pancreas from untreated wild-type donor mice resulted in microcirculatory damage of the transplanted graft and no recipient survived more than 72 h. Transplanting grafts from untreated donor mice lacking either endothelial or inducible NOS led to similar outcomes. In contrast, donor treatment with tetrahydrobiopterin prevented microcirculatory breakdown enabling long-term survival. Sole exception was transplantation of grafts from untreated donor mice lacking neuronal NOS. It resulted in intact microvascular structure and long-term recipient survival, either if donor mice were untreated or treated with tetrahydrobiopterin. Conclusion We demonstrate for the first time the crucial involvement of neuronal NOS in early microcirculatory derangements following solid organ transplantation. In this model, protective effects of tetrahydrobiopterin are mediated by targeting this isoform.


Hypertension | 2018

Endothelial Cell Tetrahydrobiopterin Modulates Sensitivity to Ang (Angiotensin) II–Induced Vascular Remodeling, Blood Pressure, and Abdominal Aortic AneurysmNovelty and Significance

Surawee Chuaiphichai; Victoria S. Rashbrook; Ashley B. Hale; Lucy Trelfa; Jyoti Patel; Eileen McNeill; Craig A. Lygate; Keith M. Channon; Gillian Douglas

GTPCH (GTP cyclohydrolase 1, encoded by Gch1) is required for the synthesis of tetrahydrobiopterin; a critical regulator of endothelial NO synthase function. We have previously shown that mice with selective loss of Gch1 in endothelial cells have mild vascular dysfunction, but the consequences of endothelial cell tetrahydrobiopterin deficiency in vascular disease pathogenesis are unknown. We investigated the pathological consequence of Ang (angiotensin) II infusion in endothelial cell Gch1 deficient (Gch1fl/fl Tie2cre) mice. Ang II (0.4 mg/kg per day, delivered by osmotic minipump) caused a significant decrease in circulating tetrahydrobiopterin levels in Gch1fl/fl Tie2cre mice and a significant increase in the N&ohgr;-nitro-L-arginine methyl ester inhabitable production of H2O2 in the aorta. Chronic treatment with this subpressor dose of Ang II resulted in a significant increase in blood pressure only in Gch1fl/fl Tie2cre mice. This finding was mirrored with acute administration of Ang II, where increased sensitivity to Ang II was observed at both pressor and subpressor doses. Chronic Ang II infusion in Gch1fl/fl Tie2ce mice resulted in vascular dysfunction in resistance mesenteric arteries with an enhanced constrictor and decreased dilator response and medial hypertrophy. Altered vascular remodeling was also observed in the aorta with an increase in the incidence of abdominal aortic aneurysm formation in Gch1fl/fl Tie2ce mice. These findings indicate a specific requirement for endothelial cell tetrahydrobiopterin in modulating the hemodynamic and structural changes induced by Ang II, through modulation of blood pressure, structural changes in resistance vessels, and aneurysm formation in the aorta.


Hypertension | 2018

Endothelial Cell Tetrahydrobiopterin Modulates Sensitivity to Ang (Angiotensin) II–Induced Vascular Remodeling, Blood Pressure, and Abdominal Aortic Aneurysm

Surawee Chuaiphichai; Victoria S. Rashbrook; Ashley B. Hale; Lucy Trelfa; Jyoti Patel; Eileen McNeill; Craig A. Lygate; Keith M. Channon; Gillian Douglas

Collaboration


Dive into the Surawee Chuaiphichai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashley B. Hale

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar

Eileen McNeill

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lucy Trelfa

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victoria S. Rashbrook

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge