Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giorgio Ambrosio is active.

Publication


Featured researches published by Giorgio Ambrosio.


IEEE Transactions on Applied Superconductivity | 2009

Design of HQ—A High Field Large Bore

H. Felice; Giorgio Ambrosio; Michael Anerella; R. Bossert; S. Caspi; D. W. Cheng; D.R. Dietderich; P. Ferracin; A. Ghosh; R. Hafalia; C. R. Hannaford; Vadim V. Kashikhin; Jesse Schmalze; S. Prestemon; GianLuca Sabbi; P. Wanderer; Alexander V. Zlobin

In support of the Large Hadron Collider luminosity upgrade, a large bore (120 mm) Nb3Sn quadrupole with 15 T peak coil field is being developed within the framework of the US LHC Accelerator Research Program (LARP). The 2-layer design with a 15 mm wide cable is aimed at pre-stress control, alignment and field quality while exploring the magnet performance limits in terms of gradient, forces and stresses. In addition, HQ will determine the magnetic, mechanical, and thermal margins of Nb3Sn technology with respect to the requirements of the luminosity upgrade at the LHC.


IEEE Transactions on Applied Superconductivity | 2014

{\rm Nb}_{3}{\rm Sn}

P. Ferracin; Giorgio Ambrosio; Michael Anerella; F. Borgnolutti; R. Bossert; Daizhan Cheng; D.R. Dietderich; H. Felice; A. Ghosh; A. Godeke; S. Izquierdo Bermudez; P. Fessia; S. Krave; M. Juchno; J. C. Perez; L. Oberli; G. Sabbi; E. Todesco; M. Yu

The high luminosity LHC (HL-LHC) project is aimed at studying and implementing the necessary changes in the LHC to increase its luminosity by a factor of five. Among the magnets that will be upgraded are the 16 superconducting low-β quadrupoles placed around the two high luminosity interaction regions (ATLAS and CMS experiments). In the current baseline scenario, these quadrupole magnets will have to generate a gradient of 140 T/m in a coil aperture of 150 mm. The resulting conductor peak field of more than 12 T will require the use of Nb3Sn superconducting coils. We present in this paper the HL-LHC low-β quadrupole design, based on the experience gathered by the US LARP program, and, in particular, we describe the support structure components to pre-load the coils, withstand the electro-magnetic forces, provide alignment and LHe containment, and integrate the cold mass in the LHC IRs.


IEEE Transactions on Applied Superconductivity | 2009

Quadrupole Magnet for LARP

R. Bossert; Giorgio Ambrosio; N. Andreev; E. Barzi; G. Chlachidze; S. Feher; V. S. Kashikhin; Vadim V. Kashikhin; M.J. Lamm; A. Nobrega; I. Novitski; D. Orris; M. Tartaglia; Alexander V. Zlobin; S. Caspi; D.R. Dietderich; P. Ferracin; A.R. Hafalia; GianLuca Sabbi; A. Ghosh; P. Wanderer

In support of the development of a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, several two-layer technological quadrupole models of TQC series with 90 mm aperture and collar-based mechanical structure have been developed at Fermilab in collaboration with LBNL. This paper summarizes the results of fabrication and test of TQC02a, the second TQC model based on RRP Nb3Sn strand, and TQC02b, built with both MJR and RRP strand. The test results presented include magnet strain and quench performance during training, as well as quench studies of current ramp rate and temperature dependence from 1.9 K to 4.5 K.


IEEE Transactions on Applied Superconductivity | 2009

Magnet Design of the 150 mm Aperture Low-

S. Caspi; D.R. Dietderich; H. Felice; P. Ferracin; R. Hafalia; C. R. Hannaford; A.F. Lietzke; J. Lizarazo; GianLuca Sabbi; X. Wang; A. Ghosh; P. Wanderer; Giorgio Ambrosio; E. Barzi; R. Bossert; G. Chlachidze; S. Feher; Vadim V. Kashikhin; M.J. Lamm; M. Tartaglia; Alexander V. Zlobin; M. Bajko; B. Bordini; Gijs DeRijk; C. Giloux; M. Karppinen; Juan Carlos Perez; L. Rossi; A. Siemko; E. Todesco

Amongst the magnet development program of a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider luminosity upgrade, six quadrupole magnets were built and tested using a shell based key and bladder technology (TQS). The 1 m long 90 mm aperture magnets are part of the US LHC Accelerator Research Program (LARP) aimed at demonstrating Nb3Sn technology by the year 2009, of a 3.6 m long magnet capable of achieving 200 T/m. In support of the LARP program the TQS magnets were tested at three different laboratories, LBNL, FNAL and CERN and while at CERN a technology-transfer and a four days magnet disassembly and reassembly were included. This paper summarizes the fabrication, assembly, cool-down and test results of the six magnets and compares measurements with design expectations.


IEEE Transactions on Applied Superconductivity | 2015

\beta

Giorgio Ambrosio

The high luminosity upgrade of the Large Hadron Collider at CERN requires a new generation of high field superconducting magnets. High field large aperture quadrupoles (MQXF) are needed for the low-beta triplets close to the ATLAS and CMS detectors, and high field two-in-one dipoles (11-T dipoles) are needed to make room for additional collimation. The MQXF quadrupoles, with a field gradient of 140 T/m in 150 mm aperture, have a peak coil field of 12.1 T at nominal current. The 11-T dipoles, with an aperture of 60 mm, have a peak coil field of 11.6 T at nominal current. Both magnets require Nb3Sn conductor and are the first applications of this superconductor to actual accelerator magnets. Collaboration between the US LARP (LHC Accelerator Research Program) and CERN is developing the MQXF magnets, whereas the 11-T dipole magnets are being developed by CERN and Fermilab. This paper reviews the status of Nb3Sn technology for accelerator magnets, discusses its main challenges, and discusses how the MQXF and 11-T designs are addressing them.


IEEE Transactions on Applied Superconductivity | 2009

Quadrupoles for the High Luminosity LHC

Giorgio Ambrosio; N. Andreev; Michael Anerella; E. Barzi; R. Bossert; S. Caspi; Guram Chlachidize; D.R. Dietderich; H. Felice; P. Ferracin; A. Ghosh; R. Hafalia; R. Hannaford; G. Jochen; V.V. Kashikhin; P. Kovach; M.J. Lamm; A.F. Lietzke; Al McInturff; Joseph F. Muratore; F. Nobrega; I. Novitsky; S. Peggs; S. Prestemon; GianLuca Sabbi; J. Schmalzle; D. Turrioni; P. Wanderer; G. Whitson; Alexander V. Zlobin

The U.S. LHC Accelerator Research Program (LARP) has started the fabrication of 3.7-m long Nb3Sn quadrupole models. The Long Quadrupoles (LQ) are ldquoProof-of-Principlerdquo magnets which are to demonstrate that Nb3Sn technology is mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, developed at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. The plans for the LQ R&D and a design update are presented and discussed in this paper. The challenges of fabricating long accelerator-quality Nb3Sn coils are presented together with the solutions adopted for the LQ coils (based on the TQ experience). During the fabrication and inspection of practice coils some problems were found and corrected. The fabrication at BNL and FNAL of the set of coils for the first Long Quadrupole is in progress.


IEEE Transactions on Applied Superconductivity | 2013

Fabrication and Test of LARP Technological Quadrupole Models of TQC Series

H. Bajas; Giorgio Ambrosio; Michael Anerella; M. Bajko; R. Bossert; S. Caspi; A. Chiuchiolo; G. Chlachidze; D.R. Dietderich; Olaf Dunkel; H. Felice; P. Ferracin; J. Feuvrier; Lucio Fiscarelli; A. Ghosh; C. Giloux; A. Godeke; A.R. Hafalia; M. Marchevsky; Stephan Russenschuck; G. Sabbi; T. Salmi; J. Schmalzle; E. Todesco; P. Wanderer; X. Wang; M. Yu

The high gradient quadrupole magnet is a 120-mm-aperture, 1-m-long Nb3Sn quadrupole developed by the LHC Accelerator Research Program collaboration in support of the High-Luminosity LHC project. Several tests were performed at Lawrence Berkeley National Laboratory in 2010-2011 achieving a maximum gradient of 170 T/m at 4.4 K. As a next step in the program, the latest model (HQ01e) was sent to CERN for testing at 1.9 K. As part of this test campaign, the magnet training has been done up to a maximum current of 16.2 kA corresponding to 85% of the short sample limit. The ramp rate dependence of the quench current is also identified. The efficiency of the quench heaters is then studied at 4.2 K and at 1.9 K. The analyses of the magnet resistance evolution during fast current discharge showed evidence of quench whereas high energy quenches have been successfully achieved and sustained with no dump resistor.


Superconductor Science and Technology | 2010

Test Results of LARP Nb3Sn Quadrupole Magnets Using a Shell-based Support Structure (TQS)

Najib Cheggour; Loren F. Goodrich; Theodore C. Stauffer; Jolene D. Splett; Xifeng Lu; A. Ghosh; Giorgio Ambrosio

Nb3Sn superconducting wires made by the restacked-rod process (RRP®) were found to have a dramatically improved resilience to axial tensile strain when alloyed with Ti as compared to Ta. Whereas Ta-alloyed Nb3Sn in RRP wires showed permanent damage to its current-carrying capacity (Ic) when tensioned beyond an intrinsic strain as small as 0.04%, Ti-doped Nb3Sn in RRP strands exhibits a remarkable reversibility up to a tensile strain of about 0.25%, conceivably making Ti-doped RRP wires more suitable for the high field magnets used in particle accelerators and nuclear magnetic resonance applications where mechanical forces are intense. A strain cycling experiment at room temperature caused a significant drop of Ic in Ta-alloyed wires, but induced an increase of Ic in the case of Ti-doped strands. Whereas either Ti or Ta doping yield a similar enhancement of the upper critical field of Nb3Sn, the much improved mechanical behavior of Ti-alloyed wires possibly makes Ti a better choice over Ta, at least for the RRP wire processing technique.


IEEE Transactions on Applied Superconductivity | 2014

Nb3Sn High Field Magnets for the High Luminosity LHC Upgrade Project

G. Chlachidze; Giorgio Ambrosio; Michael Anerella; F. Borgnolutti; R. Bossert; S. Caspi; D. W. Cheng; D.R. Dietderich; H. Felice; P. Ferracin; A. Ghosh; A. Godeke; A.R. Hafalia; M. Marchevsky; D. Orris; Pallab Kanti Roy; G. Sabbi; T. Salmi; J. Schmalzle; C. Sylvester; M. Tartaglia; J.C. Tompkins; P. Wanderer; X. Wang; A.V. Zlobin

In preparation for the high luminosity upgrade of the Large Hadron Collider (LHC), the LHC Accelerator Research Program (LARP) is developing a new generation of large aperture high-field quadrupoles based on Nb3Sn technology. One meter long and 120 mm diameter HQ quadrupoles are currently produced as a step toward the eventual aperture of 150 mm. Tests of the first series of HQ coils revealed the necessity for further optimization of the coil design and fabrication process. A new model (HQ02) has been fabricated with several design modifications, including a reduction of the cable size and an improved insulation scheme. Coils in this magnet are made of a cored cable using 0.778 mm diameter Nb3Sn strands of RRP 108/127 subelement design. The HQ02 magnet has been fabricated at LBNL and BNL, and then tested at Fermilab. This paper summarizes the performance of HQ02 at 4.5 K and 1.9 K temperatures.


IEEE Transactions on Applied Superconductivity | 2009

Development and Coil Fabrication for the LARP 3.7-m Long Nb3Sn Quadrupole

P. Ferracin; Giorgio Ambrosio; Michael Anerella; B. Bingham; R. Bossert; S. Caspi; D. W. Cheng; H. Felice; A.R. Hafalia; C. R. Hannaford; F. Nobrega; S. Prestemon; GianLuca Sabbi; J. Schmalzle; Frederic Trillaud; P. Wanderer; Alexander V. Zlobin

The 3.7 m long quadrupole magnet LQS01 represents a major step of the US LHC Accelerator Research Program (LARP) towards the development of long Nb3Sn accelerator quadrupole magnets for a LHC Luminosity upgrade. The magnet support structure is a scale up of the 1 m long Technology Quadrupole TQS design with some modifications suggested by TQS model test results. It includes an aluminum shell pre-tensioned over iron yokes using pressurized bladders and locking keys (bladder and key technology). The axial support is provided by two stainless steel end plates compressed against the coil ends by four stainless steel rods. The structure, instrumented with strain gauges, has been fabricated and assembled around four aluminum ldquodummy coilsrdquo to determine pre-load homogeneity and mechanical characteristics during cool-down. After presenting the main magnetic and mechanical parameters of LQS01, we report in this paper on the design, assembly, and test of the support structure, with a comparison between strain gauges data and 3D finite element model results.

Collaboration


Dive into the Giorgio Ambrosio's collaboration.

Top Co-Authors

Avatar

H. Felice

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D.R. Dietderich

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

GianLuca Sabbi

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

P. Wanderer

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. Schmalzle

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

P. Ferracin

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. Prestemon

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

P. Ferracin

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge