Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giovanna Morello is active.

Publication


Featured researches published by Giovanna Morello.


Journal of Bone and Mineral Research | 2012

A nonsynonymous TNFRSF11A variation increases NFκB activity and the severity of Paget's disease

Fernando Gianfrancesco; Domenico Rendina; Marco Di Stefano; Alessandra Mingione; Teresa Esposito; Daniela Merlotti; Salvatore Gallone; Sara Magliocca; Alice Goode; Daniela Formicola; Giovanna Morello; Robert Layfield; Annalisa Frattini; Gianpaolo De Filippo; Ranuccio Nuti; Mark S. Searle; Pasquale Strazzullo; Giancarlo Isaia; Giuseppe Mossetti; Luigi Gennari

Mutations in the SQSTM1 gene were identified as a common cause of Pagets disease of bone (PDB) but experimental evidence demonstrated that SQSTM1 mutation is not sufficient to induce PDB in vivo. Here, we identified two nonsynonymous single nucleotide polymorphisms (SNPs) (C421T, H141Y and T575C, V192A) in the TNFRSF11A gene, associated with PDB and with the severity of phenotype in a large population of 654 unrelated patients that were previously screened for SQSTM1 gene mutations. The largest effect was found for the T575C variant, yielding an odds ratio of 1.29 (p = 0.003), with the C allele as the risk allele. Moreover, an even more significant p‐value (p = 0.0002) was observed in the subgroup of patients with SQSTM1 mutation, with an odds ratio of 1.71. Interestingly, patients with the C allele also showed an increased prevalence of polyostotic disease (68%, 53%, and 51% in patients with CC, CT, and TT genotypes, respectively; p = 0.01), as well as an increased number of affected skeletal sites (2.9, 2.5, and 2.0 in patients with CC, CT, and TT genotypes, respectively, p = 0.008). These differences increased when analyses were restricted to cases with SQSTM1 mutation. In human cell lines, cotrasfection with mutated SQSTM1 and TNFRSF11AA192 produced a level of activation of NFκB signaling greater than cotrasfection with wild‐type SQSTM1 and TNFRSF11AV192, confirming genetics and clinical evidences. These results provide the first evidence that genetic variation within the OPG/RANK/RANKL system influences the severity of PBD in synergistic action with SQSTM1 gene mutations.


Neuropsychopharmacology | 2016

Orexin-A and Endocannabinoid Activation of the Descending Antinociceptive Pathway Underlies Altered Pain Perception in Leptin Signaling Deficiency

Luigia Cristino; Livio Luongo; Roberta Imperatore; Serena Boccella; Thorsten Becker; Giovanna Morello; Fabiana Piscitelli; Giuseppe Busetto; Sabatino Maione; Vincenzo Di Marzo

Pain perception can become altered in individuals with eating disorders and obesity for reasons that have not been fully elucidated. We show that leptin deficiency in ob/ob mice, or leptin insensitivity in the arcuate nucleus of the hypothalamus in mice with high-fat diet (HFD)-induced obesity, are accompanied by elevated orexin-A (OX-A) levels and orexin receptor-1 (OX1-R)-dependent elevation of the levels of the endocannabinoid, 2-arachidonoylglycerol (2-AG), in the ventrolateral periaqueductal gray (vlPAG). In ob/ob mice, these alterations result in the following: (i) increased excitability of OX1-R-expressing vlPAG output neurons and subsequent increased OFF and decreased ON cell activity in the rostral ventromedial medulla, as assessed by patch clamp and in vivo electrophysiology; and (ii) analgesia, in both healthy and neuropathic mice. In HFD mice, instead, analgesia is only unmasked following leptin receptor antagonism. We propose that OX-A/endocannabinoid cross talk in the descending antinociceptive pathway might partly underlie increased pain thresholds in conditions associated with impaired leptin signaling.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Orexin-A represses satiety-inducing POMC neurons and contributes to obesity via stimulation of endocannabinoid signaling

Giovanna Morello; Roberta Imperatore; Letizia Palomba; Carmine Finelli; Giuseppe Labruna; Fabrizio Pasanisi; Lucia Sacchetti; Lorena Buono; Fabiana Piscitelli; Pierangelo Orlando; Vincenzo Di Marzo; Luigia Cristino

Significance Both evolutionarily and functionally, wakefulness requires, and is accompanied by, food search and intake for survival. From the molecular perspective, the neuropeptide orexin-A (OX-A) promotes wakefulness, α–melanocyte-stimulating hormone (α-MSH) promotes satiety, and the endocannabinoid 2-arachidonoylglycerol (2-AG) promotes appetite. In the cerebrospinal fluid of obese mice and in the plasma of human obese subjects, we found an inverse correlation between OX-A and α-MSH levels, which led us to uncover the role of OX-A in promoting hyperphagia by enhancing 2-AG levels and subsequently activating CB1 receptor-mediated down-regulation of POMC synthesis and α-MSH release. Pharmacological inhibition of OX-A receptor type 1 counteracted the impairment of α-MSH signaling and the associated hyperphagia, obesity, and steatosis, thus providing a potential therapy for these pathological conditions. In the hypothalamic arcuate nucleus (ARC), proopiomelanocortin (POMC) neurons and the POMC-derived peptide α–melanocyte-stimulating hormone (α-MSH) promote satiety. POMC neurons receive orexin-A (OX-A)-expressing inputs and express both OX-A receptor type 1 (OX-1R) and cannabinoid receptor type 1 (CB1R) on the plasma membrane. OX-A is crucial for the control of wakefulness and energy homeostasis and promotes, in OX-1R–expressing cells, the biosynthesis of the endogenous counterpart of marijuanas psychotropic and appetite-inducing component Δ9-tetrahydrocannabinol, i.e., the endocannabinoid 2-arachidonoylglycerol (2-AG), which acts at CB1R. We report that OX-A/OX-1R signaling at POMC neurons promotes 2-AG biosynthesis, hyperphagia, and weight gain by blunting α-MSH production via CB1R-induced and extracellular-signal-regulated kinase 1/2 activation- and STAT3 inhibition-mediated suppression of Pomc gene transcription. Because the systemic pharmacological blockade of OX-1R by SB334867 caused anorectic effects by reducing food intake and body weight, our results unravel a previously unsuspected role for OX-A in endocannabinoid-mediated promotion of appetite by combining OX-induced alertness with food seeking. Notably, increased OX-A trafficking was found in the fibers projecting to the ARC of obese mice (ob/ob and high-fat diet fed) concurrently with elevation of OX-A release in the cerebrospinal fluid and blood of mice. Furthermore, a negative correlation between OX-A and α-MSH serum levels was found in obese mice as well as in human obese subjects (body mass index > 40), in combination with elevation of alanine aminotransferase and γ-glutamyl transferase, two markers of fatty liver disease. These alterations were counteracted by antagonism of OX-1R, thus providing the basis for a therapeutic treatment of these diseases.


Neurobiology of Disease | 2015

Molecular classification of amyotrophic lateral sclerosis by unsupervised clustering of gene expression in motor cortex.

Eleonora Aronica; Frank Baas; Anand M. Iyer; Anneloor L.M.A. ten Asbroek; Giovanna Morello; Sebastiano Cavallaro

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and ultimately fatal neurodegenerative disease, caused by the loss of motor neurons in the brain and spinal cord. Although 10% of ALS cases are familial (FALS), the majority are sporadic (SALS) and probably associated to a multifactorial etiology. Currently there is no cure or prevention for ALS. A prerequisite to formulating therapeutic strategies is gaining understanding of its etio-pathogenic mechanisms. In this study we analyzed whole-genome expression profiles of 41 motor cortex samples of control (10) and sporadic ALS (31) patients. Unsupervised hierarchical clustering was able to separate control from SALS patients. In addition, SALS patients were subdivided in two different groups that were associated to different deregulated pathways and genes, some of which were previously associated to familiar ALS. These experiments are the first to highlight the genomic heterogeneity of sporadic ALS and reveal new clues to its pathogenesis and potential therapeutic targets.


Journal of Biological Chemistry | 2015

Negative Regulation of Leptin-induced Reactive Oxygen Species (ROS) Formation by Cannabinoid CB1 Receptor Activation in Hypothalamic Neurons

Letizia Palomba; Cristoforo Silvestri; Roberta Imperatore; Giovanna Morello; Fabiana Piscitelli; Andrea Martella; Luigia Cristino; Vincenzo Di Marzo

Background: In hypothalamic neurons, leptin induces ROS production via PPAR-γ inhibition. Results: CB1 agonism prevents leptin-induced ROS accumulation by reversing PPAR-γ and catalase inhibition. Inhibition of endocannabinoid inactivation also counteracts leptin effects. Conclusion: CB1 inhibits effects of leptin that underlie part of its anorexic actions. Significance: During conditions of increased endocannabinoid tone CB1 might reduce leptin activity in the hypothalamus. The adipocyte-derived, anorectic hormone leptin was recently shown to owe part of its regulatory effects on appetite-regulating hypothalamic neuropeptides to the elevation of reactive oxygen species (ROS) levels in arcuate nucleus (ARC) neurons. Leptin is also known to exert a negative regulation on hypothalamic endocannabinoid levels and hence on cannabinoid CB1 receptor activity. Here we investigated the possibility of a negative regulation by CB1 receptors of leptin-mediated ROS formation in the ARC. Through pharmacological and molecular biology experiments we report data showing that leptin-induced ROS accumulation is 1) blunted by arachidonyl-2′-chloroethylamide (ACEA) in a CB1-dependent manner in both the mouse hypothalamic cell line mHypoE-N41 and ARC neuron primary cultures, 2) likewise blocked by a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, troglitazone, in a manner inhibited by T0070907, a PPAR-γ antagonist that also inhibited the ACEA effect on leptin, 3) blunted under conditions of increased endocannabinoid tone due to either pharmacological or genetic inhibition of endocannabinoid degradation in mHypoE-N41 and primary ARC neuronal cultures from MAGL−/− mice, respectively, and 4) associated with reduction of both PPAR-γ and catalase activity, which are reversed by both ACEA and troglitazone. We conclude that CB1 activation reverses leptin-induced ROS formation and hence possibly some of the ROS-mediated effects of the hormone by preventing PPAR-γ inhibition by leptin, with subsequent increase of catalase activity. This mechanism might underlie in part CB1 orexigenic actions under physiopathological conditions accompanied by elevated hypothalamic endocannabinoid levels.


Pharmacological Research | 2016

Formation of OX-1R/CB1R heteromeric complexes in embryonic mouse hypothalamic cells: Effect on intracellular calcium, 2-arachidonoyl-glycerol biosynthesis and ERK phosphorylation

Roberta Imperatore; Letizia Palomba; Giovanna Morello; Alessandro Di Spiezio; Fabiana Piscitelli; Vincenzo Di Marzo; Luigia Cristino

Orexin 1 (OX-1R) and cannabinoid receptor (CB1R) belong to the superfamily of G-protein-coupled receptors (GPCRs) and are mostly coupled to Gq and Gi/o proteins, respectively. In vitro studies in host cells over-expressing OX-1R and CB1R revealed a functional interaction between these receptors, through either their ability to form heteromers or the property for OX-1R to trigger the biosynthesis of 2-arachidonoylglycerol (2-AG), an endogenous CB1R ligand. Since: i) OX-1R and CB1R co-espression has been described at postsynaptc sites in hypothalamic circuits involved the regulation of energy homeostasis, and ii) increased orexin-A (OX-A) and 2-AG levels occur in hypothalamic neurons during obesity, we sought here to investigate the OX-1R/CB1R interaction in embryonic mouse hypothalamic NPY/AgRP mHypoE-N41 neurons which express, constitutively, both receptors. Treatment of mHypoE-N41 cells with OX-A (0.1-0.3μM), but not with the selective CB1R agonist, arachidonyl-2-chloroethylamide (ACEA; 0.1-0.3μM), transiently elevated [Ca(2+)]i. Incubation with a subeffective dose of OX-A (0.1μM)+ACEA (0.1μM) led to stronger and longer lasting elevation of [Ca(2+)]i, antagonized by OX-1R or CB1R antagonism with SB-334867 or AM251, respectively. FRET and co-immunoprecipitation experiments showed the formation of OX-1R/CB1R heteromers after incubation with OX-A (0.2μM), or OX-A (0.1μM)+ACEA (0.1μM), but not after ACEA (0.2μM), in a manner antagonized by SB-334867 or AM251. OX-A (0.2μM) or OX-A (0.1μM)+ACEA (0.1μM) also led to 2-AG biosynthesis. Finally, a stronger activation of ERK1/2(Thr202/185) phosphorylation in comparison to basal or each agonist alone (0.1-0.2μM), was induced by incubation with OX-A (0.1μM)+ACEA (0.1μM), again in a manner prevented by OX-1R or CB1R antagonism. We suggest that OX-A, alone at effective concentrations on [Ca(2+)]i, or in combination with ACEA, at subeffective concentrations, triggers intracellular signaling events via the formation of OX-1R/CB1R heteromers and an autocrine loop mediated by 2-AG.


Human Genetics | 2017

Copy number variability in Parkinson's disease: assembling the puzzle through a systems biology approach

Valentina La Cognata; Giovanna Morello; Velia D’Agata; Sebastiano Cavallaro

Parkinson’s disease (PD), the second most common progressive neurodegenerative disorder of aging, was long believed to be a non-genetic sporadic origin syndrome. The proof that several genetic loci are responsible for rare Mendelian forms has represented a revolutionary breakthrough, enabling to reveal molecular mechanisms underlying this debilitating still incurable condition. While single nucleotide polymorphisms (SNPs) and small indels constitute the most commonly investigated DNA variations accounting for only a limited number of PD cases, larger genomic molecular rearrangements have emerged as significant PD-causing mutations, including submicroscopic Copy Number Variations (CNVs). CNVs constitute a prevalent source of genomic variations and substantially participate in each individual’s genomic makeup and phenotypic outcome. However, the majority of genetic studies have focused their attention on single candidate-gene mutations or on common variants reaching a significant statistical level of acceptance. This gene-centric approach is insufficient to uncover the genetic background of polygenic multifactorial disorders like PD, and potentially masks rare individual CNVs that all together might contribute to disease development or progression. In this review, we will discuss literature and bioinformatic data describing the involvement of CNVs on PD pathobiology. We will analyze the most frequent copy number changes in familiar PD genes and provide a “systems biology” overview of rare individual rearrangements that could functionally act on commonly deregulated molecular pathways. Assessing the global genome-wide burden of CNVs in PD patients may reveal new disease-related molecular mechanisms, and open the window to a new possible genetic scenario in the unsolved PD puzzle.


Frontiers in Immunology | 2017

Histamine regulates the inflammatory profile of SOD1-G93A microglia and the histaminergic system is dysregulated in amyotrophic lateral sclerosis

Savina Apolloni; Paola Fabbrizio; Susanna Amadio; Giulia Napoli; Veronica Verdile; Giovanna Morello; Rosario Iemmolo; Eleonora Aronica; Sebastiano Cavallaro; Cinzia Volonté

Amyotrophic lateral sclerosis (ALS) is a late-onset motor neuron disease where activated glia release pro-inflammatory cytokines that trigger a vicious cycle of neurodegeneration in the absence of resolution of inflammation. Given the well-established role of histamine as a neuron-to-glia alarm signal implicated in brain disorders, the aim of this study was to investigate the expression and regulation of the histaminergic pathway in microglial activation in ALS mouse model and in humans. By examining the contribution of the histaminergic system to ALS, we found that particularly via H1 and H4 receptors, histamine promoted an anti-inflammatory profile in microglia from SOD1-G93A mice by modulating their activation state. A decrease in NF-κB and NADPH oxidase 2 with an increase in arginase 1 and P2Y12 receptor was induced by histamine only in the ALS inflammatory environment, but not in the healthy microglia, together with an increase in IL-6, IL-10, CD163, and CD206 phenotypic markers in SOD1-G93A cells. Moreover, histaminergic H1, H2, H3, and H4 receptors, and histamine metabolizing enzymes histidine decarboxylase, histamine N-methyltransferase, and diamine oxidase were found deregulated in spinal cord, cortex, and hypothalamus of SOD1-G93A mice during disease progression. Finally, by performing a meta-analysis study, we found a modulated expression of histamine-related genes in cortex and spinal cord from sporadic ALS patients. Our findings disclose that histamine acts as anti-inflammatory agent in ALS microglia and suggest a dysregulation of the histaminergic signaling in ALS.


Mediators of Inflammation | 2017

Neuroinflammation and ALS: Transcriptomic Insights into Molecular Disease Mechanisms and Therapeutic Targets

Giovanna Morello; Antonio Gianmaria Spampinato; Sebastiano Cavallaro

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting the motor nervous system. Despite the mechanism underlying motor neuron death is not yet clarified, multiple pathogenic processes have been proposed to account for ALS. Among these, inflammatory/immune responses have recently gained particular interest, although there are conflicting reports on the role of these processes in ALS pathogenesis and treatment. This apparent discrepancy may be due to the absence of an effective stratification of ALS patients into subgroups with markedly different clinical, biological, and molecular features. Our research group recently described genome-wide characterization of motor cortex samples from sporadic ALS (SALS) patients, revealing the existence of molecular and functional heterogeneity in SALS. Here, we reexamine data coming from our previous work, focusing on transcriptomic changes of inflammatory-related genes, in order to investigate their potential contribution in ALS. A total of 1573 inflammatory genes were identified as differentially expressed between SALS patients and controls, characterizing distinct topological pathways and networks, suggestive of specific inflammatory molecular signatures for different patient subgroups. Besides providing promising insights into the intricate relationship between inflammation and ALS, this paper represents a starting point for the rationale design and development of novel and more effective diagnostic and therapeutic applications.


Journal of Molecular Neuroscience | 2017

Selection and Prioritization of Candidate Drug Targets for Amyotrophic Lateral Sclerosis Through a Meta-Analysis Approach

Giovanna Morello; Antonio Gianmaria Spampinato; Francesca Luisa Conforti; Velia D’Agata; Sebastiano Cavallaro

Amyotrophic lateral sclerosis (ALS) is a progressive and incurable neurodegenerative disease. Although several compounds have shown promising results in preclinical studies, their translation into clinical trials has failed. This clinical failure is likely due to the inadequacy of the animal models that do not sufficiently reflect the human disease. Therefore, it is important to optimize drug target selection by identifying those that overlap in human and mouse pathology. We have recently characterized the transcriptional profiles of motor cortex samples from sporadic ALS (SALS) patients and differentiated these into two subgroups based on differentially expressed genes, which encode 70 potential therapeutic targets. To prioritize drug target selection, we investigated their degree of conservation in superoxide dismutase 1 (SOD1) G93A transgenic mice, the most widely used ALS animal model. Interspecies comparison of our human expression data with those of eight different SOD1G93A datasets present in public repositories revealed the presence of commonly deregulated targets and related biological processes. Moreover, deregulated expression of the majority of our candidate targets occurred at the onset of the disease, offering the possibility to use them for an early and more effective diagnosis and therapy. In addition to highlighting the existence of common key drivers in human and mouse pathology, our study represents the basis for a rational preclinical drug development.

Collaboration


Dive into the Giovanna Morello's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luigia Cristino

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge