Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gisele E. Ishak is active.

Publication


Featured researches published by Gisele E. Ishak.


Brain | 2015

PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia

Laura A. Jansen; Ghayda M. Mirzaa; Gisele E. Ishak; Brian J. O'Roak; Joseph Hiatt; William H. Roden; Sonya A. Gunter; Susan L. Christian; Sarah Collins; Carissa Adams; Jean Baptiste Rivière; Judith St-Onge; Jeffrey G. Ojemann; Jay Shendure; Robert F. Hevner; William B. Dobyns

Malformations of cortical development containing dysplastic neuronal and glial elements, including hemimegalencephaly and focal cortical dysplasia, are common causes of intractable paediatric epilepsy. In this study we performed multiplex targeted sequencing of 10 genes in the PI3K/AKT pathway on brain tissue from 33 children who underwent surgical resection of dysplastic cortex for the treatment of intractable epilepsy. Sequencing results were correlated with clinical, imaging, pathological and immunohistological phenotypes. We identified mosaic activating mutations in PIK3CA and AKT3 in this cohort, including cancer-associated hotspot PIK3CA mutations in dysplastic megalencephaly, hemimegalencephaly, and focal cortical dysplasia type IIa. In addition, a germline PTEN mutation was identified in a male with hemimegalencephaly but no peripheral manifestations of the PTEN hamartoma tumour syndrome. A spectrum of clinical, imaging and pathological abnormalities was found in this cohort. While patients with more severe brain imaging abnormalities and systemic manifestations were more likely to have detected mutations, routine histopathological studies did not predict mutation status. In addition, elevated levels of phosphorylated S6 ribosomal protein were identified in both neurons and astrocytes of all hemimegalencephaly and focal cortical dysplasia type II specimens, regardless of the presence or absence of detected PI3K/AKT pathway mutations. In contrast, expression patterns of the T308 and S473 phosphorylated forms of AKT and in vitro AKT kinase activities discriminated between mutation-positive dysplasia cortex, mutation-negative dysplasia cortex, and non-dysplasia epilepsy cortex. Our findings identify PI3K/AKT pathway mutations as an important cause of epileptogenic brain malformations and establish megalencephaly, hemimegalencephaly, and focal cortical dysplasia as part of a single pathogenic spectrum.


American Journal of Human Genetics | 2009

Identification of Mutations in TRAPPC9, which Encodes the NIK- and IKK-β-Binding Protein, in Nonsyndromic Autosomal-Recessive Mental Retardation

Asif Mir; Liana Kaufman; Abdul Noor; M. Mahdi Motazacker; Talal Jamil; Matloob Azam; Kimia Kahrizi; Muhammad Rafiq; Rosanna Weksberg; Tanveer Nasr; Farooq Naeem; Andreas Tzschach; Andreas W. Kuss; Gisele E. Ishak; Dan Doherty; Hans-Hilger Ropers; A. James Barkovich; Hossein Najmabadi; Muhammad Ayub; John B. Vincent

Mental retardation/intellectual disability is a devastating neurodevelopmental disorder with serious impact on affected individuals and their families, as well as on health and social services. It occurs with a prevalence of approximately 2%, is an etiologically heterogeneous condition, and is frequently the result of genetic aberrations. Autosomal-recessive forms of nonsyndromic MR (NS-ARMR) are believed to be common, yet only five genes have been identified. We have used homozygosity mapping to search for the gene responsible for NS-ARMR in a large Pakistani pedigree. Using Affymetrix 5.0 single nucleotide polymorphism (SNP) microarrays, we identified a 3.2 Mb region on 8q24 with a continuous run of 606 homozygous SNPs shared among all affected members of the family. Additional genotype data from microsatellite markers verified this, allowing us to calculate a two-point LOD score of 5.18. Within this region, we identified a truncating homozygous mutation, R475X, in exon 7 of the gene TRAPPC9. In a second large NS-ARMR/ID family, previously linked to 8q24 in a study of Iranian families, we identified a 4 bp deletion within exon 14 of TRAPPC9, also segregating with the phenotype and truncating the protein. This gene encodes NIK- and IKK-beta-binding protein (NIBP), which is involved in the NF-kappaB signaling pathway and directly interacts with IKK-beta and MAP3K14. Brain magnetic resonance imaging of affected individuals indicates the presence of mild cerebral white matter hypoplasia. Microcephaly is present in some but not all affected individuals. Thus, to our knowledge, this is the sixth gene for NS-ARMR to be discovered.


American Journal of Human Genetics | 2012

Mutation in NSUN2, which Encodes an RNA Methyltransferase, Causes Autosomal-Recessive Intellectual Disability

M. A. Khan; Muhammad Rafiq; Abdul Noor; Shobbir Hussain; Joana V. Flores; Verena Rupp; Akshita K. Vincent; Roland Malli; Ghazanfar Ali; Falak Sher Khan; Gisele E. Ishak; Dan Doherty; Rosanna Weksberg; Muhammad Ayub; Christian Windpassinger; Shahnaz Ibrahim; Michaela Frye; Muhammad Ansar; John B. Vincent

Causes of autosomal-recessive intellectual disability (ID) have, until very recently, been under researched because of the high degree of genetic heterogeneity. However, now that genome-wide approaches can be applied to single multiplex consanguineous families, the identification of genes harboring disease-causing mutations by autozygosity mapping is expanding rapidly. Here, we have mapped a disease locus in a consanguineous Pakistani family affected by ID and distal myopathy. We genotyped family members on genome-wide SNP microarrays and used the data to determine a single 2.5 Mb homozygosity-by-descent (HBD) locus in region 5p15.32-p15.31; we identified the missense change c.2035G>A (p.Gly679Arg) at a conserved residue within NSUN2. This gene encodes a methyltransferase that catalyzes formation of 5-methylcytosine at C34 of tRNA-leu(CAA) and plays a role in spindle assembly during mitosis as well as chromosome segregation. In mouse brains, we show that NSUN2 localizes to the nucleolus of Purkinje cells in the cerebellum. The effects of the mutation were confirmed by the transfection of wild-type and mutant constructs into cells and subsequent immunohistochemistry. We show that mutation to arginine at this residue causes NSUN2 to fail to localize within the nucleolus. The ID combined with a unique profile of comorbid features presented here makes this an important genetic discovery, and the involvement of NSUN2 highlights the role of RNA methyltransferase in human neurocognitive development.


Brain | 2012

Rhombencephalosynapsis: a hindbrain malformation associated with incomplete separation of midbrain and forebrain, hydrocephalus and a broad spectrum of severity

Gisele E. Ishak; Jennifer C. Dempsey; Dennis W. W. Shaw; Hannah M. Tully; Adam Mp; Pedro A. Sanchez-Lara; Ian A. Glass; Tessa Rue; Kathleen J. Millen; William B. Dobyns; Dan Doherty

Rhombencephalosynapsis is a midline brain malformation characterized by missing cerebellar vermis with apparent fusion of the cerebellar hemispheres. Rhombencephalosynapsis can be seen in isolation or together with other central nervous system and extra-central nervous system malformations. Gómez-López-Hernández syndrome combines rhombencephalosynapsis with parietal/temporal alopecia and sometimes trigeminal anaesthesia, towering skull shape and dysmorphic features. Rhombencephalosynapsis can also be seen in patients with features of vertebral anomalies, anal atresia, cardiovascular anomalies, trachea-oesophageal fistula, renal anomalies, limb defects (VACTERL) association. Based on a comprehensive evaluation of neuroimaging findings in 42 patients with rhombencephalosynapsis, we propose a spectrum of severity, ranging from mild (the partial absence of nodulus, anterior and posterior vermis), to moderate (the absence of posterior vermis with some anterior vermis and nodulus present), to severe (the absence of posterior and anterior vermis with some nodulus present), to complete (the absence of the entire vermis including nodulus). We demonstrate that the severity of rhombencephalosynapsis correlates with fusion of the tonsils, as well as midbrain abnormalities including aqueductal stenosis and midline fusion of the tectum. Rhombencephalosynapsis is also associated with multiple forebrain abnormalities including absent olfactory bulbs, dysgenesis of the corpus callosum, absent septum pellucidum and, in rare patients, atypical forms of holoprosencephaly. The frequent association between rhombencephalosynapsis and aqueductal stenosis prompted us to evaluate brain magnetic resonance images in other patients with aqueductal stenosis at our institution, and remarkably, we identified rhombencephalosynapsis in 9%. Strikingly, subjects with more severe rhombencephalosynapsis have more severely abnormal neurodevelopmental outcome, as do subjects with holoprosencephaly and patients with VACTERL features. In summary, our data provide improved diagnostic and prognostic information, and support disruption of dorsal-ventral patterning as a mechanism underlying rhombencephalosynapsis.


Journal of Medical Genetics | 2015

Joubert syndrome: a model for untangling recessive disorders with extreme genetic heterogeneity

Ruxandra Bachmann-Gagescu; Jennifer C. Dempsey; Ian G. Phelps; Brian J. O'Roak; Dana M. Knutzen; T C Rue; Gisele E. Ishak; Christine R. Isabella; N Gorden; J Adkins; Evan A. Boyle; N. de Lacy; Diana R. O'Day; Abdulrahman Alswaid; Radha Ramadevi A; L Lingappa; Charles Marques Lourenço; Loreto Martorell; À Garcia-Cazorla; Hamit Özyürek; G Haliloğlu; B Tuysuz; Meral Topçu; Phillip F. Chance; Melissa A. Parisi; Ian A. Glass; Jay Shendure; Dan Doherty

Background Joubert syndrome (JS) is a recessive neurodevelopmental disorder characterised by hypotonia, ataxia, cognitive impairment, abnormal eye movements, respiratory control disturbances and a distinctive mid-hindbrain malformation. JS demonstrates substantial phenotypic variability and genetic heterogeneity. This study provides a comprehensive view of the current genetic basis, phenotypic range and gene–phenotype associations in JS. Methods We sequenced 27 JS-associated genes in 440 affected individuals (375 families) from a cohort of 532 individuals (440 families) with JS, using molecular inversion probe-based targeted capture and next-generation sequencing. Variant pathogenicity was defined using the Combined Annotation Dependent Depletion algorithm with an optimised score cut-off. Results We identified presumed causal variants in 62% of pedigrees, including the first B9D2 mutations associated with JS. 253 different mutations in 23 genes highlight the extreme genetic heterogeneity of JS. Phenotypic analysis revealed that only 34% of individuals have a ‘pure JS’ phenotype. Retinal disease is present in 30% of individuals, renal disease in 25%, coloboma in 17%, polydactyly in 15%, liver fibrosis in 14% and encephalocele in 8%. Loss of CEP290 function is associated with retinal dystrophy, while loss of TMEM67 function is associated with liver fibrosis and coloboma, but we observe no clear-cut distinction between JS subtypes. Conclusions This work illustrates how combining advanced sequencing techniques with phenotypic data addresses extreme genetic heterogeneity to provide diagnostic and carrier testing, guide medical monitoring for progressive complications, facilitate interpretation of genome-wide sequencing results in individuals with a variety of phenotypes and enable gene-specific treatments in the future.


American Journal of Human Genetics | 2011

Mutations in the Alpha 1,2-Mannosidase Gene, MAN1B1, Cause Autosomal-Recessive Intellectual Disability

Muhammad Rafiq; Andreas W. Kuss; Lucia Puettmann; Abdul Noor; Annapoorani Ramiah; Ghazanfar Ali; Hao Hu; Nadir Ali Kerio; Yong Xiang; Masoud Garshasbi; M. A. Khan; Gisele E. Ishak; Rosanna Weksberg; Reinhard Ullmann; Andreas Tzschach; Kimia Kahrizi; Khalid Mahmood; Farooq Naeem; Muhammad Ayub; Kelley W. Moremen; John B. Vincent; Hans-Hilger Ropers; Muhammad Ansar; Hossein Najmabadi

We have used genome-wide genotyping to identify an overlapping homozygosity-by-descent locus on chromosome 9q34.3 (MRT15) in four consanguineous families affected by nonsyndromic autosomal-recessive intellectual disability (NS-ARID) and one in which the patients show additional clinical features. Four of the families are from Pakistan, and one is from Iran. Using a combination of next-generation sequencing and Sanger sequencing, we have identified mutations in the gene MAN1B1, encoding a mannosyl oligosaccharide, alpha 1,2-mannosidase. In one Pakistani family, MR43, a homozygous nonsense mutation (RefSeq number NM_016219.3: c.1418G>A [p.Trp473*]), segregated with intellectual disability and additional dysmorphic features. We also identified the missense mutation c. 1189G>A (p.Glu397Lys; RefSeq number NM_016219.3), which segregates with NS-ARID in three families who come from the same village and probably have shared inheritance. In the Iranian family, the missense mutation c.1000C>T (p.Arg334Cys; RefSeq number NM_016219.3) also segregates with NS-ARID. Both missense mutations are at amino acid residues that are conserved across the animal kingdom, and they either reduce k(cat) by ∼1300-fold or disrupt stable protein expression in mammalian cells. MAN1B1 is one of the few NS-ARID genes with an elevated mutation frequency in patients with NS-ARID from different populations.


American Journal of Human Genetics | 2014

Mutations in CSPP1 Cause Primary Cilia Abnormalities and Joubert Syndrome with or without Jeune Asphyxiating Thoracic Dystrophy

Karina Tuz; Ruxandra Bachmann-Gagescu; Diana R. O'Day; Kiet Hua; Christine R. Isabella; Ian G. Phelps; Allan E. Stolarski; Brian J. O'Roak; Jennifer C. Dempsey; Charles Marques Lourenço; Abdulrahman Alswaid; Carsten G. Bönnemann; Livija Medne; Sheela Nampoothiri; Zornitza Stark; Richard J. Leventer; Meral Topçu; Ali Cansu; Sujatha Jagadeesh; Stephen Done; Gisele E. Ishak; Ian A. Glass; Jay Shendure; Stephan C. F. Neuhauss; Chad R. Haldeman-Englert; Dan Doherty; Russell J. Ferland

Joubert syndrome (JBTS) is a recessive ciliopathy in which a subset of affected individuals also have the skeletal dysplasia Jeune asphyxiating thoracic dystrophy (JATD). Here, we have identified biallelic truncating CSPP1 (centrosome and spindle pole associated protein 1) mutations in 19 JBTS-affected individuals, four of whom also have features of JATD. CSPP1 mutations explain ∼5% of JBTS in our cohort, and despite truncating mutations in all affected individuals, the range of phenotypic severity is broad. Morpholino knockdown of cspp1 in zebrafish caused phenotypes reported in other zebrafish models of JBTS (curved body shape, pronephric cysts, and cerebellar abnormalities) and reduced ciliary localization of Arl13b, further supporting loss of CSPP1 function as a cause of JBTS. Fibroblasts from affected individuals with CSPP1 mutations showed reduced numbers of primary cilia and/or short primary cilia, as well as reduced axonemal localization of ciliary proteins ARL13B and adenylyl cyclase III. In summary, CSPP1 mutations are a major cause of the Joubert-Jeune phenotype in humans; however, the mechanism by which these mutations lead to both JBTS and JATD remains unknown.


American Journal of Human Genetics | 2012

GPSM2 Mutations Cause the Brain Malformations and Hearing Loss in Chudley-McCullough Syndrome

Dan Doherty; Albert E. Chudley; Gail Coghlan; Gisele E. Ishak; A. Micheil Innes; Edmond G. Lemire; R. Curtis Rogers; Aizeddin A. Mhanni; Ian G. Phelps; Steven J.M. Jones; Shing H. Zhan; Anthony P. Fejes; Hashem Shahin; Moien Kanaan; Hatice Akay; Mustafa Tekin; Barbara Triggs-Raine; Teresa Zelinski

Autosomal-recessive inheritance, severe to profound sensorineural hearing loss, and partial agenesis of the corpus callosum are hallmarks of the clinically well-established Chudley-McCullough syndrome (CMS). Although not always reported in the literature, frontal polymicrogyria and gray matter heterotopia are uniformly present, whereas cerebellar dysplasia, ventriculomegaly, and arachnoid cysts are nearly invariant. Despite these striking brain malformations, individuals with CMS generally do not present with significant neurodevelopmental abnormalities, except for hearing loss. Homozygosity mapping and whole-exome sequencing of DNA from affected individuals in eight families (including the family in the first report of CMS) revealed four molecular variations (two single-base deletions, a nonsense mutation, and a canonical splice-site mutation) in the G protein-signaling modulator 2 gene, GPSM2, that underlie CMS. Mutations in GPSM2 have been previously identified in people with profound congenital nonsyndromic hearing loss (NSHL). Subsequent brain imaging of these individuals revealed frontal polymicrogyria, abnormal corpus callosum, and gray matter heterotopia, consistent with a CMS diagnosis, but no ventriculomegaly. The gene product, GPSM2, is required for orienting the mitotic spindle during cell division in multiple tissues, suggesting that the sensorineural hearing loss and characteristic brain malformations of CMS are due to defects in asymmetric cell divisions during development.


Radiographics | 2010

Neuroimaging of Pediatric Central Nervous System Cytomegalovirus Infection

Kathleen R. Fink; Mahesh M. Thapa; Gisele E. Ishak; Sumit Pruthi

Cytomegalovirus (CMV) is a ubiquitous virus that usually results in asymptomatic or clinically benign infection. However, there are two groups of patients whose response to CMV infection is much more severe: those who are infected during fetal development and those who are immunocompromised. Although the manifestations of these types of infection differ, both often result in substantial neurologic sequelae. Imaging plays a key role in the diagnosis of both congenital and acquired CMV infection. Neurologic findings of congenital CMV infection include intracranial calcification, migrational abnormalities, cerebral and cerebellar volume loss, ventriculomegaly, and white matter disease. The presence of these findings in children with neurodevelopmental delays is suggestive of congenital CMV infection, even if the child was asymptomatic at birth. Certain imaging features also may indicate future neurologic deficits in symptomatic infants. Acquired CMV infection is potentially deadly in immunocompromised patients such as those infected with human immunodeficiency virus or with acquired immune deficiency syndrome and those with a history of solid organ or bone marrow transplantation. Imaging findings of acquired CMV infection often are nonspecific; however, they may indicate a need for further serologic analysis to determine if CMV infection is present. Early recognition and treatment of central nervous system CMV infection is vital for effective treatment, and familiarity with the imaging findings of this common infection is important for accurate diagnosis.


American Journal of Human Genetics | 2014

Mutations in LAMA1 Cause Cerebellar Dysplasia and Cysts with and without Retinal Dystrophy

Kimberly A. Aldinger; Stephen J. Mosca; Martine Tétreault; Jennifer C. Dempsey; Gisele E. Ishak; Taila Hartley; Ian G. Phelps; Ryan E. Lamont; Diana R. O’Day; Donald Basel; Karen W. Gripp; Laura D. Baker; Mark J. Stephan; Francois P. Bernier; Kym M. Boycott; Jacek Majewski; Jillian S. Parboosingh; A. Micheil Innes; Dan Doherty

Cerebellar dysplasia with cysts (CDC) is an imaging finding typically seen in combination with cobblestone cortex and congenital muscular dystrophy in individuals with dystroglycanopathies. More recently, CDC was reported in seven children without neuromuscular involvement (Poretti-Boltshauser syndrome). Using a combination of homozygosity mapping and whole-exome sequencing, we identified biallelic mutations in LAMA1 as the cause of CDC in seven affected individuals (from five families) independent from those included in the phenotypic description of Poretti-Boltshauser syndrome. Most of these individuals also have high myopia, and some have retinal dystrophy and patchy increased T2-weighted fluid-attenuated inversion recovery (T2/FLAIR) signal in cortical white matter. In one additional family, we identified two siblings who have truncating LAMA1 mutations in combination with retinal dystrophy and mild cerebellar dysplasia without cysts, indicating that cysts are not an obligate feature associated with loss of LAMA1 function. This work expands the phenotypic spectrum associated with the lamininopathy disorders and highlights the tissue-specific roles played by different laminin-encoding genes.

Collaboration


Dive into the Gisele E. Ishak's collaboration.

Top Co-Authors

Avatar

Dan Doherty

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian G. Phelps

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge