Giuseppe D'Onofrio
Stazione Zoologica Anton Dohrn
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Giuseppe D'Onofrio.
Journal of Molecular Evolution | 1991
Giuseppe D'Onofrio; Dominique Mouchiroud; Brahim Aïssani; Christian Gautier; Giorgio Bernardi
SummaryWe have analyzed the correlation that exists between the GC levels of third and first or second codon position for about 1400 human coding sequences. The linear relationship that was found indicates that the large differences in GC level of third codon positions of human genes are paralleled by smaller differences in GC levels of first and second codon positions. Whereas third codon position differences correspond to very large differences in codon usage within the human genome, the first and second codon position differences correspond to smaller, yet very remarkable, differences in the amino acid composition of encoded proteins. Because GC levels of codon positions are linearly correlated with the GC levels of the isochores harboring the corresponding genes, both codon usage and amino acid composition are different for proteins encoded by genes located in isochores of different GC levels. Furthermore, we have also shown that a linear relationship with a unity slope and a correlation coefficient of 0.77 exists between GC levels of introns and exons from the 238 human genes currently available for this analysis. Introns are, however, about 5% lower in GC, on average, than exons from the same genes.
Gene | 1992
Giuseppe D'Onofrio; Giorgio Bernardi
We have investigated the compositional distributions of third codon positions of genes from the 16 prokaryotes and seven eukaryotes for which the largest numbers of coding sequences are available in data banks. In prokaryotes, both narrow and broad distributions were found. In eukaryotes, distributions were very broad (except for Saccharomyces cerevisiae) and remarkably different for different genomes. In low-GC genomes, third codon positions were lower in GC than first + second codon positions and trailed towards high GC; the opposite situation was found for high-GC genomes. In all genomes, first codon positions were higher in GC than second codon positions. We then investigated the compositional correlations between third and first + second codon positions in prokaryotic genomes (the 16 mentioned above plus 87 additional ones) and in genome compartments of eukaryotes. A general, common relationship was found, which also holds within the same (heterogeneous) genomes. This universal correlation is due to the fact that the relative effects of compositional constraints on different codon positions are the same, on the average, whatever the genome under consideration.
Journal of Molecular Evolution | 1991
Brahim Aïssani; Giuseppe D'Onofrio; Dominique Mouchiroud; Katheleen Gardiner; Christian Gautier; Giorgio Bernardi
SummaryThe present work represents the first attempt to study in greater detail previously proposed compositional correlations in genomes, based on a body of additional data relating to gene localizations as well as to extended flanking sequences extracted from gene banks. We have investigated the correlations that exist between (1) the GC levels of exons of human genes, and (2) the GC levels of either intergenic sequences or introns associated with the genes under consideration. In both cases, linear relationships with slopes close to unity were found. The similarity of the linear relationships indicates similar GC levels in intergenic sequences and introns located in the same isochores. Moreover, both intergenic sequences and introns showed GC levels 5–10% lower than the corresponding exons. The above findings considerably strengthen the previously drawn conclusion that coding and noncoding sequences (both inter- and intragenic) from the same isochores of the human genome are compositionally correlated. In addition, we find linear correlations between the GC levels of codon positions and of the intergenic sequences or introns associated with the corresponding genes, as well as among the GC levels of codon positions of genes.
Gene | 2000
Maria Luisa Chiusano; Fernando Alvarez-Valin; Massimo Di Giulio; Giuseppe D'Onofrio; Gaetano Ammirato; Giovanni Colonna; Giorgio Bernardi
The nucleotide frequencies in the second codon positions of genes are remarkably different for the coding regions that correspond to different secondary structures in the encoded proteins, namely, helix, beta-strand and aperiodic structures. Indeed, hydrophobic and hydrophilic amino acids are encoded by codons having U or A, respectively, in their second position. Moreover, the beta-strand structure is strongly hydrophobic, while aperiodic structures contain more hydrophilic amino acids. The relationship between nucleotide frequencies and protein secondary structures is associated not only with the physico-chemical properties of these structures but also with the organisation of the genetic code. In fact, this organisation seems to have evolved so as to preserve the secondary structures of proteins by preventing deleterious amino acid substitutions that could modify the physico-chemical properties required for an optimal structure.
Gene | 2002
Giuseppe D'Onofrio; Tapash Chandra Ghosh; Giorgio Bernardi
The analysis of a non-redundant set of human proteins, for which both the crystallographic structures and the corresponding gene sequences are available, show that bases at third codon position are non-uniformly distributed along the coding sequences. Significant compositional differences are found by comparing the gene regions corresponding to the different secondary structures of the proteins. Inter-and intra-structure differences were most pronounced in the GC-richest genes. These results are not compatible with any proposed hypotheses based on a neutral process of formation/maintenance of the high GC(3) levels of the genes localized in the GC-richest isochores of the human genome.
Journal of Molecular Evolution | 1993
Giacomo Bernardi; Giuseppe D'Onofrio; Simone Cacciò; Giorgio Bernardi
Bony fishes (Osteichthyes) comprise over 22,000 species, about half of all vertebrate species. In order to investigate the phylogenetic relationships within this vertebrate class, we have studied the only protein whose primary structure is known in a rather large (27) number of fish species belonging to seven orders—the growth hormone. The phylogeny obtained using the maximum parsimony method based on amino acid sequences represents the first molecular phylogeny of teleostean fishes based on an extensive set of data. This phylogeny agrees remarkably well with the generally accepted phylogeny based on morphological characters and paleontological data.
Gene | 2002
Giuseppe D'Onofrio
Genes are non-uniformly distributed in the human genome, reaching the highest concentration in GC-rich isochores. This is one of the fundamental aspects of the human genome organization (Gene 241/259 (2000a,b) 3/31, for a review). In the present paper the gene distribution was analyzed in relationship to the gene expression pattern and levels. In this study evidence is produced showing: (i) that a biased gene distribution towards GC-rich isochores applies to both tissue-specific and housekeeping genes; and (ii) that genes localized in GC-rich isochores have high transcriptional levels. Since gene density and transcriptional levels are correlated with each other and both are correlated with the GC content of the isochores, the biased gene distribution in the human genome presumably is the result of selection at the gene expression levels.
Annals of the New York Academy of Sciences | 1999
Giuseppe D'Onofrio; Kamel Jabbari; Héctor Musto; Fernando Alvarez-Valin; Stéphane Cruveiller; Giorgio Bernardi
ABSTRACT: The discovery that the vertebrate genomes of warm‐blooded vertebrates are mosaics of isochores, long DNA segments homogeneous in base composition, yet belonging to families covering a broad spectrum of GC levels, has led to two major observations. The first is that gene density is strikingly non‐uniform in the genome of all vertebrates, gene concentration increasing with increasing GC levels. (Although the genomes of cold‐blooded vertebrates are characterized by smaller compositional heterogeneities than those of warm‐blooded vertebrates and high GC levels are not attained, their gene distribution is basically similar to that of warm‐blooded vertebrates.) The second observation is that the GC‐richest and gene‐richest isochores underwent a compositional transition (characterized by a strong increase in GC level) between cold‐ and warm‐blooded vertebrates. Evidence to be discussed favors the idea that this compositional transition and the ensuing highly heterogeneous compositional pattern was due to, and was maintained by, natural selection.
Journal of Molecular Evolution | 1995
Serguei Zoubak; Giuseppe D'Onofrio; Simone Cacciò; Giacomo Bernardi; Giorgio Bernardi
All 69 homologous coding sequences that are currently available in four mammalian orders were aligned and the synonymous (ie., third) positions of quartet (fourfold degenerate) codons were divided into three classes (that will be called conserved, intermediate, and variable), according to whether they show no change, one change, and more than one change, respectively. The three classes were analyzed in their compositional patterns. In the majority of GC-rich genes, the three classes of positions (but especially conserved positions) exhibited significantly different base compositions compared to expectations based on a “random” substitution process from the “ancestral” (consensus) sequence to the present-day (actual) sequences. Significant differences were rare in GC-poor genes.An analysis of the present results indicates that natural selection plays a role in the synonymous nucleotide substitution process, especially in GC-rich genes which represent the vast majority of mammalian genes.
Gene | 1999
Maria Luisa Chiusano; Giuseppe D'Onofrio; Fernando Alvarez-Valin; Kamel Jabbari; Giovanni Colonna; Giorgio Bernardi
We investigated the relationships between the nucleotide substitution rates and the predicted secondary structures in the three states representation (alpha-helix, beta-sheet, and coil). The analysis was carried out on 34 alignments, each of which comprised sequences belonging to at least four different mammalian orders. The rates of synonymous substitution were found to be significantly different in regions predicted to be alpha-helix, beta-sheet, or coil. Likewise, the nonsynonymous rates also differ, although expectedly at a lower extent, in the three types of secondary structure, suggesting that different selective constraints associated with the different structures are affecting in a similar way the synonymous and nonsynonymous rates. Moreover, the base composition of the third codon positions is different in coding sequence regions corresponding to different secondary structures of proteins.