Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Glen J. Weiss is active.

Publication


Featured researches published by Glen J. Weiss.


The New England Journal of Medicine | 2009

Inhibition of the hedgehog pathway in advanced basal-cell carcinoma.

Daniel D. Von Hoff; Patricia LoRusso; Charles M. Rudin; Josina C. Reddy; Robert L. Yauch; Raoul Tibes; Glen J. Weiss; M. J. Borad; Christine L. Hann; Julie R. Brahmer; Howard Mackey; Bertram L. Lum; Walter C. Darbonne; James C. Marsters; Frederic J. de Sauvage; Jennifer A. Low

BACKGROUND Mutations in hedgehog pathway genes, primarily genes encoding patched homologue 1 (PTCH1) and smoothened homologue (SMO), occur in basal-cell carcinoma. In a phase 1 clinical trial, we assessed the safety and pharmacokinetics of GDC-0449, a small-molecule inhibitor of SMO, and responses of metastatic or locally advanced basal-cell carcinoma to the drug. METHODS We selected 33 patients with metastatic or locally advanced basal-cell carcinoma to receive oral GDC-0449 at one of three doses; 17 patients received 150 mg per day, 15 patients received 270 mg per day, and 1 patient received 540 mg per day. We assessed tumor responses with the use of Response Evaluation Criteria in Solid Tumors (RECIST), physical examination, or both. Molecular aspects of the tumors were examined. RESULTS The median duration of the study treatment was 9.8 months. Of the 33 patients, 18 had an objective response to GDC-0449, according to assessment on imaging (7 patients), physical examination (10 patients), or both (1 patient). Of the patients who had a response, 2 had a complete response and 16 had a partial response. The other 15 patients had either stable disease (11 patients) or progressive disease (4 patients). Eight grade 3 adverse events that were deemed to be possibly related to the study drug were reported in six patients, including four with fatigue, two with hyponatremia, one with muscle spasm, and one with atrial fibrillation. One grade 4 event, asymptomatic hyponatremia, was judged to be unrelated to GDC-0449. One patient withdrew from the study because of adverse events. We found evidence of hedgehog signaling in tumors that responded to the treatment. CONCLUSIONS GDC-0449, an orally active small molecule that targets the hedgehog pathway, appears to have antitumor activity in locally advanced or metastatic basal-cell carcinoma. (ClinicalTrials.gov number, NCT00607724.)


Clinical Cancer Research | 2011

Phase I Trial of Hedgehog Pathway Inhibitor Vismodegib (GDC-0449) in Patients with Refractory, Locally Advanced or Metastatic Solid Tumors

Patricia LoRusso; Charles M. Rudin; Josina C. Reddy; Raoul Tibes; Glen J. Weiss; Mitesh J. Borad; Christine L. Hann; Julie R. Brahmer; Ilsung Chang; Walter C. Darbonne; Richard A. Graham; Kenn L. Zerivitz; Jennifer A. Low; Daniel D. Von Hoff

Purpose: The hedgehog (Hh) signaling pathway, a key regulator of cell growth and differentiation during development is implicated in pathogenesis of certain cancers. Vismodegib (GDC-0449) is a small-molecule inhibitor of smoothened, a key component of Hh signaling. This phase I trial assessed GDC-0449 treatment in patients with solid tumors refractory to current therapies or for which no standard therapy existed. Experimental Design: Sixty-eight patients received GDC-0449 at 150 mg/d (n = 41), 270 mg/d (n = 23), or 540 mg/d (n = 4). Adverse events, tumor responses, pharmacokinetics, and pharmacodynamic down-modulation of GLI1 expression in noninvolved skin were assessed. Results: Thirty-three of 68 patients had advanced basal cell carcinoma (BCC), 8 had pancreatic cancer, 1 had medulloblastoma; 17 other types of cancer were also represented. GDC-0449 was generally well-tolerated. Six patients (8.8%) experienced 7 grade 4 events (hyponatremia, fatigue, pyelonephritis, presyncope, resectable pancreatic adenocarcinoma, and paranoia with hyperglycemia), and 27.9% of patients experienced a grade 3 event [most commonly hyponatremia (10.3%), abdominal pain (7.4%), and fatigue (5.9%)]. No maximum tolerated dose was reached. The recommended phase II dose was 150 mg/d, based on achievement of maximal plasma concentration and pharmacodynamic response at this dose. Tumor responses were observed in 20 patients (19 with BCC and 1 unconfirmed response in medulloblastoma), 14 patients had stable disease as best response, and 28 had progressive disease. Evidence of GLI1 down-modulation was observed in noninvolved skin. Conclusions: GDC-0449 has an acceptable safety profile and encouraging anti-tumor activity in advanced BCC and medulloblastoma. Further study in these and other cancer types is warranted. Clin Cancer Res; 17(8); 2502–11. ©2011 AACR.


Cancer Discovery | 2013

First-in-Humans Trial of an RNA Interference Therapeutic Targeting VEGF and KSP in Cancer Patients with Liver Involvement

Josep Tabernero; Geoffrey I. Shapiro; Patricia LoRusso; A. Cervantes; Gary K. Schwartz; Glen J. Weiss; Luis Paz-Ares; Daniel C. Cho; Jeffrey R. Infante; Maria Alsina; Mrinal M. Gounder; Rick Falzone; Jamie Harrop; Amy C. Seila White; Iva Toudjarska; David Bumcrot; Rachel Meyers; Gregory Hinkle; Nenad Svrzikapa; Renta Hutabarat; Valerie Clausen; Jeffrey Cehelsky; Saraswathy V. Nochur; Christina Gamba-Vitalo; Akshay Vaishnaw; Dinah Sah; Jared Gollob; Howard A. Burris

UNLABELLED RNA interference (RNAi) is a potent and specific mechanism for regulating gene expression. Harnessing RNAi to silence genes involved in disease holds promise for the development of a new class of therapeutics. Delivery is key to realizing the potential of RNAi, and lipid nanoparticles (LNP) have proved effective in delivery of siRNAs to the liver and to tumors in animals. To examine the activity and safety of LNP-formulated siRNAs in humans, we initiated a trial of ALN-VSP, an LNP formulation of siRNAs targeting VEGF and kinesin spindle protein (KSP), in patients with cancer. Here, we show detection of drug in tumor biopsies, siRNA-mediated mRNA cleavage in the liver, pharmacodynamics suggestive of target downregulation, and antitumor activity, including complete regression of liver metastases in endometrial cancer. In addition, we show that biweekly intravenous administration of ALN-VSP was safe and well tolerated. These data provide proof-of-concept for RNAi therapeutics in humans and form the basis for further development in cancer. SIGNIFICANCE The fi ndings in this report show safety, pharmacokinetics, RNAi mechanism of action, and clinical activity with a novel fi rst-in-class LNP-formulated RNAi therapeutic in patients with cancer. The ability to harness RNAi to facilitate specifi c multitargeting, as well as increase the number of druggable targets, has important implications for future drug development in oncology.


Annals of Oncology | 2008

EGFR regulation by microRNA in lung cancer: correlation with clinical response and survival to gefitinib and EGFR expression in cell lines

Glen J. Weiss; Lynne T. Bemis; Eiji Nakajima; Michio Sugita; D. K. Birks; William A. Robinson; Marileila Varella-Garcia; Paul A. Bunn; Jerry Haney; Barbara Helfrich; Harubumi Kato; Fred R. Hirsch; Wilbur A. Franklin

BACKGROUND Allelic loss in chromosome 3p is one of the most frequent and earliest genetic events in lung carcinogenesis. We investigated if the loss of microRNA-128b, a microRNA located on chromosome 3p and a putative regulator of epidermal growth factor receptor (EGFR), correlated with response to targeted EGFR inhibition. Loss of microRNA-128b would be equivalent to losing a tumor suppressor gene because it would allow increased expression of EGFR. PATIENTS AND METHODS We initially showed that microRNA-128b is a regulator of EGFR in non-small-cell lung cancer (NSCLC) cell lines. We tested microRNA-128b expression levels by quantitative RT-PCR, genomic copy number by quantitative PCR, and mutations in the mature microRNA-128b by sequencing. We determined whether microRNA-128b loss of heterozygosity (LOH) in 58 NSCLC patient samples correlated with response to gefitinib and evaluated EGFR expression and mutation status. RESULTS We determined that microRNA-128b directly regulates EGFR. MicroRNA-128b LOH was frequent in tumor samples and correlated significantly with clinical response and survival following gefitinib. EGFR expression and mutation status did not correlate with survival outcome. CONCLUSION Identifying microRNA regulators of oncogenes could have far-reaching implications for lung cancer patients including improving patient selection for targeted agents, development of novel therapeutics, or development as early biomarkers of disease.


Molecular Cancer Therapeutics | 2008

MicroRNAs and cancer: past, present, and potential future

Kristen M. Nelson; Glen J. Weiss

MicroRNAs (miRNAs) are a class of small RNAs that have revealed a new level of gene regulation in the cell. After being processed by Drosha and Dicer RNase III endonucleases, mature miRNAs can inhibit the translation of mRNA by directing a RNA-induced silencing complex (RISC) to the target mRNA. miRNAs are making an impact in our understanding of cancer biology. Acting as either tumor suppressors or oncogenes, miRNAs regulate several genes known to play important roles in cancer. With the discovery of miRNAs comes the need for new techniques to study their activity. Bioinformatic tools can be used to predict mRNA targets of miRNA, but validation of miRNA regulation of predicted targets is imperative. miRNAs are differentially expressed in normal and tumor cells as well as between tumor subtypes. These differences may be useful as prognostic and predictive markers in cancer patients. The study of miRNAs holds much promise for improving diagnosis and treatment of cancer. [Mol Cancer Ther 2008;7(12):3655–60]


Journal of Thoracic Oncology | 2011

miR-1254 and miR-574-5p: Serum-Based microRNA Biomarkers for Early-Stage Non-small Cell Lung Cancer

Kristen M. Foss; Chao Sima; Donatella Ugolini; Monica Neri; Kristi Allen; Glen J. Weiss

Introduction: The ability to diagnose non-small cell lung cancer (NSCLC) at an early stage may lead to improved survival. The aim of this study was to identify differentially expressed serum-based microRNAs (miRNAs) between patients with early-stage NSCLC and controls. These miRNAs may serve as biomarkers for NSCLC early detection. Methods: miRNA profiling was performed on total RNA extracted from serum obtained from 22 individuals (11 controls and 11 patients with early-stage NSCLC). Quantitative polymerase chain reaction (qPCR) was used to validate the profiling results in the discovery set and in a validation set of 31 controls and 22 patients with early-stage NSCLC. Additionally, six matched plasma samples (four NSCLC cases and two controls) and three serum mesothelioma samples were analyzed by qPCR. Receiver operating characteristic curves were generated for each possible combination of the miRNAs measured by qPCR. Results: The expression of hsa-miR-1254 and hsa-miR-574-5p was significantly increased in the early-stage NSCLC samples with respect to the controls. Receiver operating characteristic curves plotting these two miRNAs were able to discriminate early-stage NSCLC samples from controls with 82% and 77% of sensitivity and specificity, respectively, in the discovery cohort and with 73% and 71% of sensitivity and specificity, respectively, in the validation cohort. The mesothelioma and plasma samples did not seem to classify into either NSCLC or control groups. Conclusions: Serum miRNAs are differentially expressed between patients with early-stage NSCLC and controls. The utility of miR-1254 and miR-574-5p serum-based biomarkers as minimally invasive screening and triage tools for subsequent diagnostic evaluation warrants additional validation.


Journal of Clinical Oncology | 1991

A phase I trial of taxol given by a 6-hour intravenous infusion.

Thomas D. Brown; Kathleen A. Havlin; Glen J. Weiss; J. Cagnola; Jim M. Koeller; J. G. Kuhn; Jinee Rizzo; John B. Craig; Jerry L. Phillips; D. D. Von Hoff

Taxol is a unique mitotic inhibitor that has entered phase II investigation. Phase I studies demonstrated hypersensitivity reactions that were related to the cremophor vehicle and to the rate of drug infusion. As a result, the time span of intravenous (IV) infusion of taxol was routinely prolonged to 6 hours or beyond, and premedication with diphenhydramine, dexamethasone, and cimetidine was initiated. Early studies showed antitumor activity, especially against malignant melanoma and ovarian carcinoma. This phase I trial was performed giving taxol, as a 6-hour IV infusion every 21 days, without premedication. The purpose was to study the necessity of premedication and its impact on toxicity and pharmacokinetics. Thirty-one patients received 64 assessable courses of taxol. One patient had a hypersensitivity reaction, which was easily controlled using routine measures. Myelosuppression was dose-limiting, but sporadic, with two fatalities due to sepsis. Nonhematologic toxicity was of grade 1 and 2 except for one patient with grade 3 mucositis and two patients with grade 3 neuropathy. The neuropathy consisted of reversible painful paresthesias, requiring discontinuation of drug in two patients. Four partial responses were seen (three in patients with non-small-cell lung cancer, one in a patient with adenocarcinoma of unknown primary). Pharmacokinetic values were consistent with those previously reported. The occurrence of myelosuppression or neurotoxicity appeared to be associated with the area under the concentration x time curve (AUC) of taxol. The recommended phase II starting dose on this schedule is 225 mg/m2. Taxol merits broad investigation at the phase II level.


The New England Journal of Medicine | 2015

Structure-Guided Blockade of CSF1R Kinase in Tenosynovial Giant-Cell Tumor

William D. Tap; Zev A. Wainberg; Stephen P. Anthony; Prabha N. Ibrahim; Chao Zhang; John H. Healey; Bartosz Chmielowski; Arthur P. Staddon; Allen Lee Cohn; Geoffrey I. Shapiro; Vicki L. Keedy; Arun S. Singh; Igor Puzanov; Eunice L. Kwak; Andrew J. Wagner; Daniel D. Von Hoff; Glen J. Weiss; Ramesh K. Ramanathan; Jiazhong Zhang; Gaston Habets; Ying Zhang; Elizabeth A. Burton; Gary Conard Visor; Laura Sanftner; Paul Severson; Hoa Nguyen; Marie J. Kim; Adhirai Marimuthu; Garson Tsang; Rafe Shellooe

BACKGROUND Expression of the colony-stimulating factor 1 (CSF1) gene is elevated in most tenosynovial giant-cell tumors. This observation has led to the discovery and clinical development of therapy targeting the CSF1 receptor (CSF1R). METHODS Using x-ray co-crystallography to guide our drug-discovery research, we generated a potent, selective CSF1R inhibitor, PLX3397, that traps the kinase in the autoinhibited conformation. We then conducted a multicenter, phase 1 trial in two parts to analyze this compound. In the first part, we evaluated escalations in the dose of PLX3397 that was administered orally in patients with solid tumors (dose-escalation study). In the second part, we evaluated PLX3397 at the chosen phase 2 dose in an extension cohort of patients with tenosynovial giant-cell tumors (extension study). Pharmacokinetic and tumor responses in the enrolled patients were assessed, and CSF1 in situ hybridization was performed to confirm the mechanism of action of PLX3397 and that the pattern of CSF1 expression was consistent with the pathological features of tenosynovial giant-cell tumor. RESULTS A total of 41 patients were enrolled in the dose-escalation study, and an additional 23 patients were enrolled in the extension study. The chosen phase 2 dose of PLX3397 was 1000 mg per day. In the extension study, 12 patients with tenosynovial giant-cell tumors had a partial response and 7 patients had stable disease. Responses usually occurred within the first 4 months of treatment, and the median duration of response exceeded 8 months. The most common adverse events included fatigue, change in hair color, nausea, dysgeusia, and periorbital edema; adverse events rarely led to discontinuation of treatment. CONCLUSIONS Treatment of tenosynovial giant-cell tumors with PLX3397 resulted in a prolonged regression in tumor volume in most patients. (Funded by Plexxikon; ClinicalTrials.gov number, NCT01004861.).


Clinical Cancer Research | 2013

Phase I Study of the Hedgehog Pathway Inhibitor IPI-926 in Adult Patients with Solid Tumors

Antonio Jimeno; Glen J. Weiss; Wilson H. Miller; Scott N. Gettinger; Bernhard Eigl; Anne Lynne S Chang; Joi Dunbar; Shannon Devens; Kerrie Faia; Georgio Skliris; Jeffery L. Kutok; Karl D. Lewis; Raoul Tibes; William H. Sharfman; Robert W. Ross; Charles M. Rudin

Purpose: To conduct a first-in-human phase I study to determine the dose-limiting toxicities (DLT), characterize the pharmacokinetic profile, and document the antitumor activity of IPI-926, a new chemical entity that inhibits the Hedgehog pathway (HhP). Experimental Design: Patients with solid tumors refractory to standard therapy were given IPI-926 once daily (QD) by mouth in 28-day cycles. The starting dose was 20 mg, and an accelerated titration schedule was used until standard 3 + 3 dose-escalation cohorts were implemented. Pharmacokinetics were evaluated on day −7 and day 22 of cycle 1. Results: Ninety-four patients (32F, 62M; ages, 39–87) received doses ranging from 20 to 210 mg QD. Dose levels up to and including 160 mg administered QD were well tolerated. Toxicities consisted of reversible elevations in aspartate aminotransferase (AST), alanine aminotransferase (ALT) and bilirubin, fatigue, nausea, alopecia, and muscle spasms. IPI-926 was not associated with hematologic toxicity. IPI-926 pharmacokinetics were characterized by a slow absorption (Tmax = 2–8 hours) and a terminal half-life (t1/2) between 20 and 40 hours, supporting QD dosing. Of those HhP inhibitor-naïve patients with basal cell carcinoma (BCC) who received more than one dose of IPI-926 and had a follow-up clinical or Response Evaluation Criteria in Solid Tumors (RECIST) assessment, nearly a third (8 of 28 patients) showed a response to IPI-926 at doses ≥130 mg. Conclusions: IPI-926 was well tolerated up to 160 mg QD within 28-day cycles, which was established as the recommended phase II dose and schedule for this agent. Single-agent activity of IPI-926 was observed in HhP inhibitor–naïve patients with BCC. Clin Cancer Res; 19(10); 2766–74. ©2013 AACR.


Molecular Cancer Therapeutics | 2010

Resistance May Not Be Futile: microRNA Biomarkers for Chemoresistance and Potential Therapeutics

Kristi Allen; Glen J. Weiss

Chemoresistance to many commercially available cancer therapeutic drugs is a common occurrence and contributes to cancer mortality as it often leads to disease progression. There have been a number of studies evaluating the mechanisms of resistance and the biological factors involved. microRNAs have recently been identified as playing a role in the regulation of key genes implicated as cancer therapeutic targets or in mechanisms of chemoresistance including EGFR, MDR1, PTEN, Bak1, and PDCD4 among others. This article briefly reviews chemoresistance mechanisms, discusses how microRNAs can play a role in those mechanisms, and summarizes current research involving microRNAs as both regulators of key target genes for chemoresistance and biomarkers for treatment response. It is clear from the accumulating literature that microRNAs can play an important role in chemoresistance and hold much promise for the development of targeted therapies and personalized medicine. This review brings together much of this new research as a starting point for identifying key areas of interest and potentials for future study. Mol Cancer Ther; 9(12); 3126–36. ©2010 AACR.

Collaboration


Dive into the Glen J. Weiss's collaboration.

Top Co-Authors

Avatar

Daniel D. Von Hoff

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gayle S. Jameson

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashish Sangal

Cancer Treatment Centers of America

View shared research outputs
Top Co-Authors

Avatar

Corey J. Langer

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jeffrey R. Infante

Sarah Cannon Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raoul Tibes

Translational Genomics Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge