Gloria E. Reynolds
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gloria E. Reynolds.
Science Translational Medicine | 2011
Denise A. Chan; Patrick D. Sutphin; Phuong Nguyen; Sandra Turcotte; Edwin W. Lai; Alice Banh; Gloria E. Reynolds; Jen-Tsan Chi; Jason Wu; David E. Solow-Cordero; Muriel Bonnet; Jack U. Flanagan; Donna M. Bouley; Edward E. Graves; William A. Denny; Michael P. Hay; Amato J. Giaccia
A screen identifies a drug that specifically kills glycolysis-dependent cancer cells by inhibiting glucose uptake. Cancer’s Achilles’ Heel A quick tug on a fuel line can stop a car dead in its tracks. Similarly, depriving a cancer cell of its energy source can bring proliferation to a standstill. Chan et al. devised a drug discovery assay that took advantage of the fact that some kidney cancer cells depend on glucose for survival. By screening 64,000 small molecules, the authors found a class of drug that inhibits the glucose transporter and selectively impairs growth of these cancer cells in cultures and in animals. Certain kidney and other types of cancer cells lack the von Hippel–Lindau (VHL) tumor suppressor protein. This deficiency reorients carbohydrate metabolism so that the cancer cells depend on aerobic glycolysis—the conversion of glucose to lactate—rather than the more typical oxidative phosphorylation for a supply of energy. The drug identified by the authors, STF-31, was toxic to the VHL-deficient kidney tumor cells but, unlike many other cancer drugs, did not induce autophagy, apoptosis, or DNA damage. Rather, STF-31 exploited the fact that inactivation of VHL increases the activity of hypoxia-inducible factor transcription factor, which in turn stimulates the transcription of genes involved in glucose metabolism, including the glucose transporter–encoding gene GLUT1. By binding directly to the transporter, STF-31 blocked glucose uptake in VHL-deficient cancer cells but not in those with intact VHL; with their sugar delivery system stymied, the tumor suppressor–deprived cancer cells ceased glycolysis and thus adenosine 5′-triphosphate production and succumbed to necrosis. An extra benefit of the new agent is that its activity can be easily visualized, even deep inside an animal. Glucose uptake in a tumor can be monitored by fluorodeoxyglucose positron emission tomography. The reduction in glucose metabolism forced on tumors by STF-31 was detected in mice with this method—an approach that can be readily applied to humans to test the drug’s efficacy. If it can thwart the fuel supply line in human cancers, this promising drug likely will bring tumor thriving to a halt. Identifying new targeted therapies that kill tumor cells while sparing normal tissue is a major challenge of cancer research. Using a high-throughput chemical synthetic lethal screen, we sought to identify compounds that exploit the loss of the von Hippel–Lindau (VHL) tumor suppressor gene, which occurs in about 80% of renal cell carcinomas (RCCs). RCCs, like many other cancers, are dependent on aerobic glycolysis for ATP production, a phenomenon known as the Warburg effect. The dependence of RCCs on glycolysis is in part a result of induction of glucose transporter 1 (GLUT1). Here, we report the identification of a class of compounds, the 3-series, exemplified by STF-31, which selectively kills RCCs by specifically targeting glucose uptake through GLUT1 and exploiting the unique dependence of these cells on GLUT1 for survival. Treatment with these agents inhibits the growth of RCCs by binding GLUT1 directly and impeding glucose uptake in vivo without toxicity to normal tissue. Activity of STF-31 in these experimental renal tumors can be monitored by [18F]fluorodeoxyglucose uptake by micro–positron emission tomography imaging, and therefore, these agents may be readily tested clinically in human tumors. Our results show that the Warburg effect confers distinct characteristics on tumor cells that can be selectively targeted for therapy.
Molecular and Cellular Biology | 2002
Anthony W.I. Lo; Carl N. Sprung; Bijan Fouladi; Mehrdad Pedram; Laure Sabatier; Michelle Ricoul; Gloria E. Reynolds; John P. Murnane
ABSTRACT Telomeres are essential for protecting the ends of chromosomes and preventing chromosome fusion. Telomere loss has been proposed to play an important role in the chromosomal rearrangements associated with tumorigenesis. To determine the relationship between telomere loss and chromosome instability in mammalian cells, we investigated the events resulting from the introduction of a double-strand break near a telomere with I-SceI endonuclease in mouse embryonic stem cells. The inactivation of a selectable marker gene adjacent to a telomere as a result of the I-SceI-induced double-strand break involved either the addition of a telomere at the site of the break or the formation of inverted repeats and large tandem duplications on the end of the chromosome. Nucleotide sequence analysis demonstrated large deletions and little or no complementarity at the recombination sites involved in the formation of the inverted repeats. The formation of inverted repeats was followed by a period of chromosome instability, characterized by amplification of the subtelomeric region, translocation of chromosomal fragments onto the end of the chromosome, and the formation of dicentric chromosomes. Despite this heterogeneity, the rearranged chromosomes eventually acquired telomeres and were stable in most of the cells in the population at the time of analysis. Our observations are consistent with a model in which broken chromosomes that do not regain a telomere undergo sister chromatid fusion involving nonhomologous end joining. Sister chromatid fusion is followed by chromosome instability resulting from breakage-fusion-bridge cycles involving the sister chromatids and rearrangements with other chromosomes. This process results in highly rearranged chromosomes that eventually become stable through the addition of a telomere onto the broken end. We have observed similar events after spontaneous telomere loss in a human tumor cell line, suggesting that chromosome instability resulting from telomere loss plays a role in chromosomal rearrangements associated with tumor cell progression.
Molecular and Cellular Biology | 2006
Mehrdad Pedram; Carl N. Sprung; Qing Gao; Anthony W.I. Lo; Gloria E. Reynolds; John P. Murnane
ABSTRACT Reversible transcriptional silencing of genes located near telomeres, termed the telomere position effect (TPE), is well characterized in Saccharomyces cerevisiae. TPE has also been observed in human tumor cell lines, but its function remains unknown. To investigate TPE in normal mammalian cells, we developed clones of mouse embryonic stem (ES) cells that contain single-copy marker genes integrated adjacent to different telomeres. Analysis of these telomeric transgenes demonstrated that they were expressed at very low levels compared to the same transgenes integrated at interstitial sites. Similar to the situation in yeast, but in contrast to studies with human tumor cell lines, TPE in mouse ES cells was not reversed with trichostatin A. Prolonged culturing without selection resulted in extensive DNA methylation and complete silencing of telomeric transgenes, which could be reversed by treatment with 5-azacytidine. Thus, complete silencing of the telomeric transgenes appears to involve a two-step process in which the initial repression is reinforced by DNA methylation. Extensive methylation of the telomeric transgenes was also observed in various tissues and embryonic fibroblasts isolated from transgenic mice. In contrast, telomeric transgenes were not silenced in ES cell lines isolated from 3-day-old preimplantation embryos, consistent with the hypothesis that TPE plays a role in the development of the embryo.
DNA Repair | 2008
Qing Gao; Gloria E. Reynolds; Andrew Wilcox; Douglas Miller; Peggie Cheung; Steven E. Artandi; John P. Murnane
Telomeres play an important role in protecting the ends of chromosomes and preventing chromosome fusion. We have previously demonstrated that double-strand breaks near telomeres in mammalian cells result in either the addition of a new telomere at the site of the break, termed chromosome healing, or sister chromatid fusion that initiates chromosome instability. In the present study, we have investigated the role of telomerase in chromosome healing and the importance of chromosome healing in preventing chromosome instability. In embryonic stem cell lines that are wild type for the catalytic subunit of telomerase (TERT), chromosome healing at I-SceI-induced double-strand breaks near telomeres accounted for 22 of 35 rearrangements, with the new telomeres added directly at the site of the break in all but one instance. In contrast, in two TERT-knockout embryonic stem cell lines, chromosome healing accounted for only 1 of 62 rearrangements, with a 23 bp insertion at the site of the sole chromosome-healing event. However, in a third TERT-knockout embryonic stem cell line, 10PTKO-A, chromosome healing was a common event that accounted for 20 of 34 rearrangements. Although this chromosome healing also occurred at the I-SceI site, differences in the microhomology at the site of telomere addition demonstrated that the mechanism was distinct from that in wild-type embryonic stem cell lines. In addition, the newly added telomeres in 10PTKO-A shortened with time in culture, eventually resulting in either telomere elongation through a telomerase-independent mechanism or loss of the subtelomeric plasmid sequences entirely. The combined results demonstrate that chromosome healing can occur through both telomerase-dependent and -independent mechanisms, and that although both mechanisms can prevent degradation and sister chromatid fusion, neither mechanism is efficient enough to prevent sister chromatid fusion from occurring in many cells experiencing double-strand breaks near telomeres.
Stem Cells | 2007
Qing Gao; Gloria E. Reynolds; Lindsay Innes; Mehrdad Pedram; Ella F. Jones; Mustafa Junabi; Dong-Wei Gao; Michelle Ricoul; Laure Sabatier; Henry Van Brocklin; Benjamin L. Franc; John P. Murnane
In addition to their role in protecting the ends of chromosomes, telomeres also influence the expression of adjacent genes, a process called telomere‐position effect. We previously reported that the neo and HSV‐tk transgenes located adjacent to telomeres in mouse embryonic stem cells are initially expressed at low levels and then become gradually silenced upon passage in culture through a process involving DNA methylation. We also reported extensive DNA methylation in these telomeric transgenes in three different tissues isolated from mice generated from one of these embryonic stem cell clones. In the present study, we demonstrate that embryo fibroblasts isolated from two different mouse strains show extensive DNA methylation and silencing of the telomeric transgenes. Consistent with this observation, we also demonstrate little or no detectable expression of the HSV‐tk telomeric transgene in somatic tissues using whole body imaging. In contrast, both telomeric transgenes are expressed at low levels and have little DNA methylation in embryonic stem cell lines isolated from these same mouse strains. Our results demonstrate that telomere‐position effect in mammalian cells can be observed either as a low level of expression in embryonic stem cells in the preimplantation embryo or as complete silencing and DNA methylation in differentiated cells and somatic tissues. This pattern of expression of the telomeric transgenes demonstrates that subtelomeric regions, like much of the genome, are epigenetically reprogrammed in the preimplantation embryo, a process that has been proposed to be important in early embryonic development.
Molecular and Cellular Biology | 2010
Avanti Kulkarni; Oliver Zschenker; Gloria E. Reynolds; Douglas Miller; John P. Murnane
ABSTRACT The ends of chromosomes, called telomeres, are composed of a DNA repeat sequence and associated proteins, which prevent DNA degradation and chromosome fusion. We have previously used plasmid sequences integrated adjacent to a telomere to demonstrate that mammalian telomeres suppress gene expression, called telomere position effect (TPE). We have also shown that subtelomeric regions are highly sensitive to double-strand breaks, leading to chromosome instability, and that this instability can be prevented by the addition of a new telomere to the break, a process called chromosome healing. We have now targeted the same plasmid sequences to a site 100 kb from a telomere in a human carcinoma cell line to address the effect of telomere proximity on telomere position effect, chromosome healing, and sensitivity to double-strand breaks. The results demonstrate a substantial decrease in TPE 100 kb from the telomere, demonstrating that TPE is very limited in range. Chromosome healing was also diminished 100 kb from the telomere, consistent with our model that chromosome healing serves as a repair process for restoring lost telomeres. Conversely, the region 100 kb from the telomere was highly sensitive to double-strand breaks, demonstrating that the sensitive region is a relatively large target for ionizing radiation-induced chromosome instability.
DNA Repair | 2009
Oliver Zschenker; Avanti Kulkarni; Douglas Miller; Gloria E. Reynolds; Marine Granger-Locatelli; Géraldine Pottier; Laure Sabatier; John P. Murnane
We previously reported that a single DNA double-strand break (DSB) near a telomere in mouse embryonic stem cells can result in chromosome instability. We have observed this same type of instability as a result of spontaneous telomere loss in human tumor cell lines, suggesting that a deficiency in the repair of DSBs near telomeres has a role in chromosome instability in human cancer. We have now investigated the frequency of the chromosome instability resulting from DSBs near telomeres in the EJ-30 human bladder carcinoma cell line to determine whether subtelomeric regions are sensitive to DSBs, as previously reported in yeast. These studies involved determining the frequency of large deletions, chromosome rearrangements, and chromosome instability resulting from I-SceI endonuclease-induced DSBs at interstitial and telomeric sites. As an internal control, we also analyzed the frequency of small deletions, which have been shown to be the most common type of mutation resulting from I-SceI-induced DSBs at interstitial sites. The results demonstrate that although the frequency of small deletions is similar at interstitial and telomeric DSBs, the frequency of large deletions and chromosome rearrangements is much greater at telomeric DSBs. DSB-induced chromosome rearrangements at telomeric sites also resulted in prolonged periods of chromosome instability. Telomeric regions in mammalian cells are therefore highly sensitive to DSBs, suggesting that spontaneous or ionizing radiation-induced DSBs at these locations may be responsible for many of the chromosome rearrangements that are associated with human cancer.
DNA Repair | 2011
Douglas Miller; Gloria E. Reynolds; Ricardo Mejia; Jeremy M. Stark; John P. Murnane
We have previously demonstrated that double-strand breaks (DSBs) in regions near telomeres are much more likely to result in large deletions, gross chromosome rearrangements, and chromosome instability than DSBs at interstitial sites within chromosomes. In the present study, we investigated whether this response of subtelomeric regions to DSBs is a result of a deficiency in DSB repair by comparing the frequency of homologous recombination repair (HRR) and nonhomologous end joining (NHEJ) at interstitial and telomeric sites following the introduction of DSBs by I-SceI endonuclease. We also monitored the frequency of small deletions, which have been shown to be the most common mutation at I-SceI-induced DSBs at interstitial sites. We observed no difference in the frequency of small deletions or HRR at interstitial and subtelomeric DSBs. However, the frequency of NHEJ was significantly lower at DSBs near telomeres compared to interstitial sites. The frequency of NHEJ was also lower at DSBs occurring at interstitial sites containing telomeric repeat sequences. We propose that regions near telomeres are deficient in classical NHEJ as a result of the presence of cis-acting telomere-binding proteins that cause DSBs to be processed as though they were telomeres, resulting in excessive resection, telomere loss, and eventual chromosome rearrangements by alternative NHEJ.
Nature Communications | 2015
Samuel F. Bakhoum; Lilian Kabeche; Matthew D. Wood; Christopher D. Laucius; Dian Qu; Ashley M. Laughney; Gloria E. Reynolds; Raymond J. Louie; Joanna J. Phillips; Denise A. Chan; Bassem I. Zaki; John P. Murnane; Claudia Petritsch; Duane A. Compton
The exquisite sensitivity of mitotic cancer cells to ionizing radiation (IR) underlies an important rationale for the widely used fractionated radiation therapy. However, the mechanism for this cell cycle-dependent vulnerability is unknown. Here we show that treatment with IR leads to mitotic chromosome segregation errors in vivo and long-lasting aneuploidy in tumour-derived cell lines. These mitotic errors generate an abundance of micronuclei that predispose chromosomes to subsequent catastrophic pulverization thereby independently amplifying radiation-induced genome damage. Experimentally suppressing whole-chromosome missegregation reduces downstream chromosomal defects and significantly increases the viability of irradiated mitotic cells. Further, orthotopically transplanted human glioblastoma tumours in which chromosome missegregation rates have been reduced are rendered markedly more resistant to IR, exhibiting diminished markers of cell death in response to treatment. This work identifies a novel mitotic pathway for radiation-induced genome damage, which occurs outside of the primary nucleus and augments chromosomal breaks. This relationship between radiation treatment and whole-chromosome missegregation can be exploited to modulate therapeutic response in a clinically relevant manner.
DNA Repair | 2011
Gloria E. Reynolds; Qing Gao; Douglas Miller; Bryan E. Snow; Lea Harrington; John P. Murnane
Telomerase serves to maintain telomeric repeat sequences at the ends of chromosomes. However, telomerase can also add telomeric repeat sequences at DNA double-strand breaks (DSBs), a process called chromosome healing. Here, we employed a method of inducing DSBs near telomeres to query the role of two proteins, PIF1 and NBS1, in chromosome healing in mammalian cells. PIF1 was investigated because the PIF1 homolog in Saccharomyces cerevisiae inhibits chromosome healing, as shown by a 1000-fold increase in chromosome in PIF1-deficient cells. NBS1 was investigated because the functional homolog of NBS1 in S. cerevisiae, Xrs2, is part of the Mre11/Rad50/Xrs2 complex that is required for chromosome healing due to its role in the processing of DSBs and recruitment of telomerase. We found that disruption of mPif1 had no detectable effect on the frequency of chromosome healing at DSBs near telomeres in murine embryonic stem cells. Moreover, the Nbs1(ΔB) hypomorph, which is defective in the processing of DSBs, also had no detectable effect on the frequency of chromosome healing, DNA degradation, or gross chromosome rearrangements (GCRs) that result from telomeric DSBs. Although we cannot rule out small changes in chromosome healing using this system, it is clear from our results that knockout of PIF1 or the Nbs1(ΔB) hypomorph does not result in large differences in chromosome healing in murine cells. These results represent the first genetic assessment of the role of these proteins in chromosome healing in mammals, and suggest that murine cells have evolved mechanisms to ensure the functional redundancy of Pif1 or Nbs1 in the regulation of chromosome healing.