Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Godfrey H. Redhi is active.

Publication


Featured researches published by Godfrey H. Redhi.


Biological Psychiatry | 2008

Fatty acid amide hydrolase inhibition heightens anandamide signaling without producing reinforcing effects in primates

Zuzana Justinova; Regina A. Mangieri; Marco Bortolato; Svetlana I. Chefer; Alexey G. Mukhin; Jason R. Clapper; Alvin R. King; Godfrey H. Redhi; Sevil Yasar; Daniele Piomelli; Steven R. Goldberg

BACKGROUND CB(1) cannabinoid receptors in the brain are known to participate in the regulation of reward-based behaviors. However, the contribution of each of the endocannabinoid transmitters, anandamide and 2-arachidonoylglycerol (2-AG), to these behaviors remains undefined. To address this question, we assessed the effects of URB597, a selective anandamide deactivation inhibitor, as a reinforcer of drug-seeking and drug-taking behavior in squirrel monkeys. METHODS We investigated the reinforcing effects of the fatty acid amide hydrolase (FAAH) inhibitor URB597 in monkeys trained to intravenously self-administer Delta(9)-tetrahydrocannabinol (THC), anandamide, or cocaine and quantified brain endocannabinoid levels using liquid chromatography/mass spectrometry. We measured brain FAAH activity using an ex vivo enzyme assay. RESULTS URB597 (.3 mg/kg, intravenous) blocked FAAH activity and increased anandamide levels throughout the monkey brain. This effect was accompanied by a marked compensatory decrease in 2-AG levels. Monkeys did not self-administer URB597, and the drug did not promote reinstatement of extinguished drug-seeking behavior previously maintained by THC, anandamide, or cocaine. Pretreatment with URB597 did not modify self-administration of THC or cocaine, even though, as expected, it significantly potentiated anandamide self-administration. CONCLUSIONS In the monkey brain, the FAAH inhibitor URB597 increases anandamide levels while causing a compensatory down-regulation in 2-AG levels. These effects are accompanied by a striking lack of reinforcing properties, which distinguishes URB597 from direct-acting cannabinoid agonists such as THC. Our results reveal an unexpected functional heterogeneity within the endocannabinoid signaling system and suggest that FAAH inhibitors might be used therapeutically without risk of abuse or triggering of relapse to drug abuse.


The Journal of Neuroscience | 2005

The Endogenous Cannabinoid Anandamide and Its Synthetic Analog R(+)-Methanandamide Are Intravenously Self-Administered by Squirrel Monkeys

Zuzana Justinova; Marcello Solinas; Gianluigi Tanda; Godfrey H. Redhi; Steven R. Goldberg

Anandamide, an endogenous ligand for brain cannabinoid CB1 receptors, produces many behavioral effects similar to those of Δ9-tetrahydrocannabinol (THC), the main psychoactive ingredient in marijuana. Reinforcing effects of THC have been demonstrated in experimental animals, but there is only indirect evidence that endogenous cannabinoids such as anandamide participate in brain reward processes. We now show that anandamide serves as an effective reinforcer of drug-taking behavior when self-administered intravenously by squirrel monkeys. We also show that methanandamide, a synthetic long-lasting anandamide analog, similarly serves as a reinforcer of drug-taking behavior. Finally, we show that the reinforcing effects of both anandamide and methanandamide are blocked by pretreatment with the cannabinoid CB1 receptor antagonist rimonabant (SR141716). These findings strongly suggest that release of endogenous cannabinoids is involved in brain reward processes and that activation of cannabinoid CB1 receptors by anandamide could be part of the signaling of natural rewarding events.


Biological Psychiatry | 2011

Blockade of Nicotine Reward and Reinstatement by Activation of Alpha-Type Peroxisome Proliferator-Activated Receptors

Paola Mascia; Marco Pistis; Zuzana Justinova; Leigh V. Panlilio; Antonio Luchicchi; Salvatore Lecca; Maria Scherma; Walter Fratta; Paola Fadda; Chanel Barnes; Godfrey H. Redhi; Sevil Yasar; Bernard Le Foll; Gianluigi Tanda; Daniele Piomelli; Steven R. Goldberg

BACKGROUND Recent findings indicate that inhibitors of fatty acid amide hydrolase (FAAH) counteract the rewarding effects of nicotine in rats. Inhibition of FAAH increases levels of several endogenous substances in the brain, including the endocannabinoid anandamide and the noncannabinoid fatty acid ethanolamides oleoylethanolamide (OEA) and palmitoylethanolamide, which are ligands for alpha-type peroxisome proliferator-activated nuclear receptors (PPAR-α). Here, we evaluated whether directly acting PPAR-α agonists can modulate reward-related effects of nicotine. METHODS We combined behavioral, neurochemical, and electrophysiological approaches to evaluate effects of the PPAR-α agonists [[4-Chloro-6-[(2,3-dimethylphenyl)amino]-2-pyrimidinyl]thio]acetic acid (WY14643) and methyl oleoylethanolamide (methOEA; a long-lasting form of OEA) on 1) nicotine self-administration in rats and squirrel monkeys; 2) reinstatement of nicotine-seeking behavior in rats and monkeys; 3) nicotine discrimination in rats; 4) nicotine-induced electrophysiological activity of ventral tegmental area dopamine neurons in anesthetized rats; and 5) nicotine-induced elevation of dopamine levels in the nucleus accumbens shell of freely moving rats. RESULTS The PPAR-α agonists dose-dependently decreased nicotine self-administration and nicotine-induced reinstatement in rats and monkeys but did not alter food- or cocaine-reinforced operant behavior or the interoceptive effects of nicotine. The PPAR-α agonists also dose-dependently decreased nicotine-induced excitation of dopamine neurons in the ventral tegmental area and nicotine-induced elevations of dopamine levels in the nucleus accumbens shell of rats. The ability of WY14643 and methOEA to counteract the behavioral, electrophysiological, and neurochemical effects of nicotine was reversed by the PPAR-α antagonist 1-[(4-Chlorophenyl)methyl]-3-[(1,1-dimethylethyl)thio]-a,a-dimethyl-5-(1-methylethyl)-1H-Indole-2-propanoic acid (MK886). CONCLUSIONS These findings indicate that PPAR-α might provide a valuable new target for antismoking medications.


Neuropsychopharmacology | 2012

Novel Use of a Lipid-Lowering Fibrate Medication to Prevent Nicotine Reward and Relapse: Preclinical Findings

Leigh V. Panlilio; Zuzana Justinova; Paola Mascia; Marco Pistis; Antonio Luchicchi; Salvatore Lecca; Chanel Barnes; Godfrey H. Redhi; Jordan Adair; Stephen J. Heishman; Sevil Yasar; Mano Aliczki; József Haller; Steven R. Goldberg

Experimental drugs that activate α-type peroxisome proliferator-activated receptors (PPARα) have recently been shown to reduce the rewarding effects of nicotine in animals, but these drugs have not been approved for human use. The fibrates are a class of PPARα-activating medications that are widely prescribed to improve lipid profiles and prevent cardiovascular disease, but these drugs have not been tested in animal models of nicotine reward. Here, we examine the effects of clofibrate, a representative of the fibrate class, on reward-related behavioral, electrophysiological, and neurochemical effects of nicotine in rats and squirrel monkeys. Clofibrate prevented the acquisition of nicotine-taking behavior in naive animals, substantially decreased nicotine taking in experienced animals, and counteracted the relapse-inducing effects of re-exposure to nicotine or nicotine-associated cues after a period of abstinence. In the central nervous system, clofibrate blocked nicotines effects on neuronal firing in the ventral tegmental area and on dopamine release in the nucleus accumbens shell. All of these results suggest that fibrate medications might promote smoking cessation. The fact that fibrates are already approved for human use could expedite clinical trials and subsequent implementation of fibrates as a treatment for tobacco dependence, especially in smokers with abnormal lipid profiles.


The Journal of Neuroscience | 2011

The Endogenous Cannabinoid 2-Arachidonoylglycerol Is Intravenously Self-Administered by Squirrel Monkeys

Zuzana Justinova; Sevil Yasar; Godfrey H. Redhi; Steven R. Goldberg

Two endogenous ligands for cannabinoid CB1 receptors, anandamide (N-arachidonoylethanolamine) and 2-arachidonoylglycerol (2-AG), have been identified and characterized. 2-AG is the most prevalent endogenous cannabinoid ligand in the brain, and electrophysiological studies suggest 2-AG, rather than anandamide, is the true natural ligand for cannabinoid receptors and the key endocannabinoid involved in retrograde signaling in the brain. Here, we evaluated intravenously administered 2-AG for reinforcing effects in nonhuman primates. Squirrel monkeys that previously self-administered anandamide or nicotine under a fixed-ratio schedule with a 60 s timeout after each injection had their self-administration behavior extinguished by vehicle substitution and were then given the opportunity to self-administer 2-AG. Intravenous 2-AG was a very effective reinforcer of drug-taking behavior, maintaining higher numbers of self-administered injections per session and higher rates of responding than vehicle across a wide range of doses. To assess involvement of CB1 receptors in the reinforcing effects of 2-AG, we pretreated monkeys with the cannabinoid CB1 receptor inverse agonist/antagonist rimonabant [N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide]. Rimonabant produced persistent blockade of 2-AG self-administration without affecting responding maintained by food under similar conditions. Thus, 2-AG was actively self-administered by monkeys with or without a history of cannabinoid self-administration, and the reinforcing effects of 2-AG were mediated by CB1 receptors. Self-administration of 2-AG by squirrel monkeys provides a valuable procedure for studying abuse liability of medications that interfere with 2-AG signaling within the brain and for investigating mechanisms involved in the reinforcing effects of endocannabinoids.


Nature Neuroscience | 2013

Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid

Zuzana Justinova; Paola Mascia; Hui-Qiu Wu; Maria E Secci; Godfrey H. Redhi; Leigh V. Panlilio; Maria Scherma; Chanel Barnes; Alexandra Parashos; Tamara Zara; Walter Fratta; Marcello Solinas; Marco Pistis; Jack Bergman; Brian D. Kangas; Sergi Ferré; Gianluigi Tanda; Robert Schwarcz; Steven R. Goldberg

In the reward circuitry of the brain, α-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of Δ9-tetrahydrocannabinol (THC), marijuanas main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by reexposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are no medications approved for treatment of marijuana dependence. Modulation of KYNA offers a pharmacological strategy for achieving abstinence from marijuana and preventing relapse.


Addiction Biology | 2011

Reinforcing and neurochemical effects of cannabinoid CB1 receptor agonists, but not cocaine, are altered by an adenosine A2A receptor antagonist

Zuzana Justinova; Sergi Ferré; Godfrey H. Redhi; Paola Mascia; Jessica Stroik; Davide Quarta; Sevil Yasar; Christa E. Müller; Rafael Franco; Steven R. Goldberg

Several recent studies suggest functional and molecular interactions between striatal adenosine A2A and cannabinoid CB1 receptors. Here, we demonstrate that A2A receptors selectively modulate reinforcing effects of cannabinoids. We studied effects of A2A receptor blockade on the reinforcing effects of delta‐9‐tetrahydrocannabinol (THC) and the endogenous CB1 receptor ligand anandamide under a fixed‐ratio schedule of intravenous drug injection in squirrel monkeys. A low dose of the selective adenosine A2A receptor antagonist MSX‐3 (1 mg/kg) caused downward shifts of THC and anandamide dose‐response curves. In contrast, a higher dose of MSX‐3 (3 mg/kg) shifted THC and anandamide dose‐response curves to the left. MSX‐3 did not modify cocaine or food pellet self‐administration. Also, MSX‐3 neither promoted reinstatement of extinguished drug‐seeking behavior nor altered reinstatement of drug‐seeking behavior by non‐contingent priming injections of THC. Finally, using in vivo microdialysis in freely‐moving rats, a behaviorally active dose of MSX‐3 significantly counteracted THC‐induced, but not cocaine‐induced, increases in extracellular dopamine levels in the nucleus accumbens shell. The significant and selective results obtained with the lower dose of MSX‐3 suggest that adenosine A2A antagonists acting preferentially at presynaptic A2A receptors might selectively reduce reinforcing effects of cannabinoids that lead to their abuse. However, the appearance of potentiating rather than suppressing effects on cannabinoid reinforcement at the higher dose of MSX‐3 would likely preclude the use of such a compound as a medication for cannabis abuse. Adenosine A2A antagonists with more selectivity for presynaptic versus postsynaptic receptors could be potential medications for treatment of cannabis abuse.


Biological Psychiatry | 2015

The Novel Metabotropic Glutamate Receptor 2 Positive Allosteric Modulator, AZD8529, Decreases Nicotine Self-Administration and Relapse in Squirrel Monkeys

Zuzana Justinova; Leigh V. Panlilio; Maria E. Secci; Godfrey H. Redhi; Charles W. Schindler; Alan J. Cross; Ladislav Mrzljak; Amy Medd; Yavin Shaham; Steven R. Goldberg

BACKGROUND Based on rodent studies, group II metabotropic glutamate receptors (mGluR2 and mGluR3) were suggested as targets for addiction treatment. However, LY379268 and other group II agonists do not discriminate between the mainly presynaptic inhibitory mGluR2 (the proposed treatment target) and mGluR3. These agonists also produce tolerance over repeated administration and are no longer considered for addiction treatment. Here, we determined the effects of AZD8529, a selective positive allosteric modulator of mGluR2, on abuse-related effects of nicotine in squirrel monkeys and rats. METHODS We first assessed modulation of mGluR2 function by AZD8529 using functional in vitro assays in membranes prepared from a cell line expressing human mGluR2 and in primate brain slices. We then determined AZD8529 (.03-10 mg/kg, intramuscular injection) effects on intravenous nicotine self-administration and reinstatement of nicotine seeking induced by nicotine priming or nicotine-associated cues. We also determined AZD8529 effects on food self-administration in monkeys and nicotine-induced dopamine release in accumbens shell in rats. RESULTS AZD8529 potentiated agonist-induced activation of mGluR2 in the membrane-binding assay and in primate cortex, hippocampus, and striatum. In monkeys, AZD8529 decreased nicotine self-administration at doses (.3-3 mg/kg) that did not affect food self-administration. AZD8529 also reduced nicotine priming- and cue-induced reinstatement of nicotine seeking after extinction of the drug-reinforced responding. In rats, AZD8529 decreased nicotine-induced accumbens dopamine release. CONCLUSIONS These results provide evidence for efficacy of positive allosteric modulators of mGluR2 in nonhuman primate models of nicotine reinforcement and relapse. This drug class should be considered for nicotine addiction treatment.


The Journal of Neuroscience | 2014

Differential Effects of Presynaptic versus Postsynaptic Adenosine A2A Receptor Blockade on Δ9-Tetrahydrocannabinol (THC) Self-Administration in Squirrel Monkeys

Zuzana Justinova; Godfrey H. Redhi; Steven R. Goldberg; Sergi Ferré

Different doses of an adenosine A2A receptor antagonist MSX-3 [3,7-dihydro-8-[(1E)-2-(3-ethoxyphenyl)ethenyl]-7 methyl-3-[3-(phosphooxy)propyl-1-(2 propynil)-1H-purine-2,6-dione] were found previously to either decrease or increase self-administration of cannabinoids delta-9-tetrahydrocannabinol (THC) or anandamide in squirrel monkeys. It was hypothesized that the decrease observed with a relatively low dose of MSX-3 was related to blockade of striatal presynaptic A2A receptors that modulate glutamatergic neurotransmission, whereas the increase observed with a higher dose was related to blockade of postsynaptic A2A receptors localized in striatopallidal neurons. This hypothesis was confirmed in the present study by testing the effects of the preferential presynaptic and postsynaptic A2A receptor antagonists SCH-442416 [2-(2-furanyl)-7-[3-(4-methoxyphenyl)propyl]-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine] and KW-6002 [(E)-1, 3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6-dione], respectively, in squirrel monkeys trained to intravenously self-administer THC. SCH-442416 produced a significant shift to the right of the THC self-administration dose–response curves, consistent with antagonism of the reinforcing effects of THC. Conversely, KW-6002 produced a significant shift to the left, consistent with potentiation of the reinforcing effects of THC. These results show that selectively blocking presynaptic A2A receptors could provide a new pharmacological approach to the treatment of marijuana dependence and underscore corticostriatal glutamatergic neurotransmission as a possible main mechanism involved in the rewarding effects of THC.


Neuropsychopharmacology | 2016

Blockade of Nicotine and Cannabinoid Reinforcement and Relapse by a Cannabinoid CB1-Receptor Neutral Antagonist AM4113 and Inverse Agonist Rimonabant in Squirrel Monkeys.

Charles W. Schindler; Godfrey H. Redhi; Kiran Vemuri; Alexandros Makriyannis; Le Foll B; Jack Bergman; Goldberg; Zuzana Justinova

Nicotine, the main psychoactive component of tobacco, and (−)−Δ9-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, play major roles in tobacco and marijuana dependence as reinforcers of drug-seeking and drug-taking behavior. Drugs that act as inverse agonists of cannabinoid CB1 receptors in the brain can attenuate the rewarding and abuse-related effects of nicotine and THC, but their clinical use is hindered by potentially serious side effects. The recently developed CB1-receptor neutral antagonists may provide an alternative therapeutic approach to nicotine and cannabinoid dependence. Here we compare attenuation of nicotine and THC reinforcement and reinstatement in squirrel monkeys by the CB1-receptor inverse agonist rimonabant and by the recently developed CB1-receptor neutral antagonist AM4113. Both rimonabant and AM4113 reduced two effects of nicotine and THC that play major roles in tobacco and marijuana dependence: (1) maintenance of high rates of drug-taking behavior, and (2) priming- or cue-induced reinstatement of drug-seeking behavior in abstinent subjects (models of relapse). In contrast, neither rimonabant nor AM4113 modified cocaine-reinforced or food-reinforced operant behavior under similar experimental conditions. However, both rimonabant and AM4113 reduced cue-induced reinstatement in monkeys trained to self-administer cocaine, suggesting the involvement of a common cannabinoid-mediated mechanism in the cue-induced reinstatement for different drugs of abuse. These findings point to CB1-receptor neutral antagonists as a new class of medications for treatment of both tobacco dependence and cannabis dependence.

Collaboration


Dive into the Godfrey H. Redhi's collaboration.

Top Co-Authors

Avatar

Zuzana Justinova

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Steven R. Goldberg

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Sevil Yasar

United States Department of Health and Human Services

View shared research outputs
Top Co-Authors

Avatar

Leigh V. Panlilio

United States Department of Health and Human Services

View shared research outputs
Top Co-Authors

Avatar

Charles W. Schindler

United States Department of Health and Human Services

View shared research outputs
Top Co-Authors

Avatar

Gianluigi Tanda

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Paola Mascia

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Chanel Barnes

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge