Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zuzana Justinova is active.

Publication


Featured researches published by Zuzana Justinova.


Neuropsychopharmacology | 2007

Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids

Paulina Carriba; Oskar Ortiz; Kshitij Patkar; Zuzana Justinova; Jessica Stroik; Andrea Themann; Christa E. Müller; Anima S Woods; Bruce T. Hope; Francisco Ciruela; Vicent Casadó; Enric I. Canela; Carme Lluis; Steven R. Goldberg; Rosario Moratalla; Rafael Franco; Sergi Ferré

The mechanism of action responsible for the motor depressant effects of cannabinoids, which operate through centrally expressed cannabinoid CB1 receptors, is still a matter of debate. In the present study, we report that CB1 and adenosine A2A receptors form heteromeric complexes in co-transfected HEK-293T cells and rat striatum, where they colocalize in fibrilar structures. In a human neuroblastoma cell line, CB1 receptor signaling was found to be completely dependent on A2A receptor activation. Accordingly, blockade of A2A receptors counteracted the motor depressant effects produced by the intrastriatal administration of a cannabinoid CB1 receptor agonist. These biochemical and behavioral findings demonstrate that the profound motor effects of cannabinoids depend on physical and functional interactions between striatal A2A and CB1 receptors.


Neuropsychopharmacology | 2003

Involvement of adenosine A1 and A2A receptors in the motor effects of caffeine after its acute and chronic administration.

Marzena Karcz-Kubicha; Katerina Antoniou; Anton Terasmaa; Davide Quarta; Marcello Solinas; Zuzana Justinova; Antonella Pèzzola; Rosaria Reggio; Christa E. Müller; Kjell Fuxe; Steven R. Goldberg; Patrizia Popoli; Sergi Ferré

The involvement of adenosine A1 and A2A receptors in the motor effects of caffeine is still a matter of debate. In the present study, counteraction of the motor-depressant effects of the selective A1 receptor agonist CPA and the A2A receptor agonist CGS 21680 by caffeine, the selective A1 receptor antagonist CPT, and the A2A receptor antagonist MSX-3 was compared. CPT and MSX-3 produced motor activation at the same doses that selectively counteracted motor depression induced by CPA and CGS 21680, respectively. Caffeine also counteracted motor depression induced by CPA and CGS 21680 at doses that produced motor activation. However, caffeine was less effective than CPT at counteracting CPA and even less effective than MSX-3 at counteracting CGS 21680. On the other hand, when administered alone in habituated animals, caffeine produced stronger motor activation than CPT or MSX-3. An additive effect on motor activation was obtained when CPT and MSX-3 were coadministered. Altogether, these results suggest that the motor-activating effects of acutely administered caffeine in rats involve the central blockade of both A1 and A2A receptors. Chronic exposure to caffeine in the drinking water (1.0 mg/ml) resulted in tolerance to the motor effects of an acute administration of caffeine, lack of tolerance to amphetamine, apparent tolerance to MSX-3 (shift to the left of its ‘bell-shaped’ dose–response curve), and true cross-tolerance to CPT. The present results suggest that development of tolerance to the effects of A1 receptor blockade might be mostly responsible for the tolerance to the motor-activating effects of caffeine and that the residual motor-activating effects of caffeine in tolerant individuals might be mostly because of A2A receptor blockade.


Journal of Neurochemistry | 2006

Anandamide administration alone and after inhibition of fatty acid amide hydrolase (FAAH) increases dopamine levels in the nucleus accumbens shell in rats

Marcello Solinas; Zuzana Justinova; Steven R. Goldberg; Gianluigi Tanda

Although endogenous cannabinoid systems have been implicated in the modulation of the rewarding effects of abused drugs and food, little is known about the direct effects of endogenous ligands for cannabinoid receptors on brain reward processes. Here we show for the first time that the intravenous administration of anandamide, an endogenous ligand for cannabinoid receptors, and its longer‐lasting synthetic analog methanandamide, increase the extracellular dopamine levels in the nucleus accumbens shell of awake, freely moving rats, an effect characteristic of most drugs abused by humans. Anandamide produced two distinctly different effects on dopamine levels: (1) a rapid, transient increase that was blocked by the cannabinoid CB1 receptor antagonist rimonabant, but not by the vanilloid VR1 receptor antagonist capsazepine, and was magnified and prolonged by the fatty acid amide hydrolase (FAAH) enzyme inhibitor, URB597; (2) a smaller delayed and long‐lasting increase, not sensitive to CB1, VR1 or FAAH blockade. Both effects were blocked by infusing either tetrodotoxin (TTX, 1 µm) or calcium‐free Ringers solution through the microdialysis probe, demonstrating that they were dependent on the physiologic activation of dopaminergic neurotransmission. Thus, these results indicate that anandamide, through the activation of the mesolimbic dopaminergic system, participates in the signaling of brain reward processes.


Biological Psychiatry | 2008

Fatty acid amide hydrolase inhibition heightens anandamide signaling without producing reinforcing effects in primates

Zuzana Justinova; Regina A. Mangieri; Marco Bortolato; Svetlana I. Chefer; Alexey G. Mukhin; Jason R. Clapper; Alvin R. King; Godfrey H. Redhi; Sevil Yasar; Daniele Piomelli; Steven R. Goldberg

BACKGROUND CB(1) cannabinoid receptors in the brain are known to participate in the regulation of reward-based behaviors. However, the contribution of each of the endocannabinoid transmitters, anandamide and 2-arachidonoylglycerol (2-AG), to these behaviors remains undefined. To address this question, we assessed the effects of URB597, a selective anandamide deactivation inhibitor, as a reinforcer of drug-seeking and drug-taking behavior in squirrel monkeys. METHODS We investigated the reinforcing effects of the fatty acid amide hydrolase (FAAH) inhibitor URB597 in monkeys trained to intravenously self-administer Delta(9)-tetrahydrocannabinol (THC), anandamide, or cocaine and quantified brain endocannabinoid levels using liquid chromatography/mass spectrometry. We measured brain FAAH activity using an ex vivo enzyme assay. RESULTS URB597 (.3 mg/kg, intravenous) blocked FAAH activity and increased anandamide levels throughout the monkey brain. This effect was accompanied by a marked compensatory decrease in 2-AG levels. Monkeys did not self-administer URB597, and the drug did not promote reinstatement of extinguished drug-seeking behavior previously maintained by THC, anandamide, or cocaine. Pretreatment with URB597 did not modify self-administration of THC or cocaine, even though, as expected, it significantly potentiated anandamide self-administration. CONCLUSIONS In the monkey brain, the FAAH inhibitor URB597 increases anandamide levels while causing a compensatory down-regulation in 2-AG levels. These effects are accompanied by a striking lack of reinforcing properties, which distinguishes URB597 from direct-acting cannabinoid agonists such as THC. Our results reveal an unexpected functional heterogeneity within the endocannabinoid signaling system and suggest that FAAH inhibitors might be used therapeutically without risk of abuse or triggering of relapse to drug abuse.


Neuropharmacology | 2008

Interactions between histamine H3 and dopamine D2 receptors and the implications for striatal function

Carla Ferrada; Sergi Ferré; Vicent Casadó; Antonio Cortés; Zuzana Justinova; Chanel Barnes; Enric I. Canela; Steven R. Goldberg; Rob Leurs; Carme Lluis; Rafael Franco

The striatum contains a high density of histamine H(3) receptors, but their role in striatal function is poorly understood. Previous studies have demonstrated antagonistic interactions between striatal H(3) and dopamine D(1) receptors at the biochemical level, while contradictory results have been reported about interactions between striatal H(3) and dopamine D(2) receptors. In this study, by using reserpinized mice, we demonstrate the existence of behaviorally significant antagonistic postsynaptic interactions between H(3) and D(1) and also between H(3) and dopamine D(2) receptors. The selective H(3) receptor agonist imetit inhibited, while the H(3) receptor antagonist thioperamide potentiated locomotor activation induced by either the D(1) receptor agonist SKF 38393 or the D(2) receptor agonist quinpirole. High scores of locomotor activity were obtained with H(3) receptor blockade plus D(1) and D(2) receptor co-activation, i.e., when thioperamide was co-administered with both SKF 38393 and quinpirole. Radioligand binding experiments in striatal membrane preparations showed the existence of a strong and selective H(3)-D(2) receptor interaction at the membrane level. In agonist/antagonist competition experiments, stimulation of H(3) receptors with several H(3) receptor agonists significantly decreased the affinity of D(2) receptors for the agonist. This kind of intramembrane receptor-receptor interactions are a common biochemical property of receptor heteromers. In fact, by using Bioluminescence Resonance Energy Transfer techniques in co-transfected HEK-293 cells, H(3) (but not H(4)) receptors were found to form heteromers with D(2) receptors. This study demonstrates an important role of postsynaptic H(3) receptors in the modulation of dopaminergic transmission by means of a negative modulation of D(2) receptor function.


Journal of Pharmacology and Experimental Therapeutics | 2008

Inhibition of anandamide hydrolysis by cyclohexyl carbamic acid 3'-carbamoyl-3-yl ester (URB597) reverses abuse-related behavioral and neurochemical effects of nicotine in rats.

Maria Scherma; Leigh V. Panlilio; Paola Fadda; Liana Fattore; Islamhany Gamaleddin; Bernard Le Foll; Zuzana Justinova; Éva Mikics; József Haller; Julie Medalie; Jessica Stroik; Chanel Barnes; Sevil Yasar; Gianluigi Tanda; Daniele Piomelli; Walter Fratta; Steven R. Goldberg

Emerging evidence suggests that the rewarding, abuse-related effects of nicotine are modulated by the endocannabinoid system of the brain. For example, pharmacological blockade or genetic deletion of cannabinoid CB1 receptors can reduce or eliminate many abuse-related behavioral and neurochemical effects of nicotine. Furthermore, doses of Δ9-tetrahydrocannabinol and nicotine that are ineffective when given alone can induce conditioned place preference when given together. These previous studies have used systemically administered CB1 receptor agonists and antagonists and gene deletion techniques, which affect cannabinoid CB1 receptors throughout the brain. A more functionally selective way to alter endocannabinoid activity is to inhibit fatty acid amide hydrolase (FAAH), thereby magnifying and prolonging the effects of the endocannabinoid anandamide only when and where it is synthesized and released on demand. Here, we combined behavioral and neurochemical approaches to evaluate whether the FAAH inhibitor URB597 (cyclohexyl carbamic acid 3′-carbamoyl-3-yl ester) could alter the abuse-related effects of nicotine in rats. We found that URB597, at a dose (0.3 mg/kg) that had no behavioral effects by itself, prevented development of nicotine-induced conditioned place preference (CPP) and acquisition of nicotine self-administration. URB597 also reduced nicotine-induced reinstatement in both CPP and self-administration models of relapse. Furthermore, in vivo microdialysis showed that URB597 reduced nicotine-induced dopamine elevations in the nucleus accumbens shell, the terminal area of the brains mesolimbic reward system. These findings suggest that FAAH inhibition can counteract the addictive properties of nicotine and that FAAH may serve as a new target for development of medications for treatment of tobacco dependence.


Journal of Pharmacology and Experimental Therapeutics | 2007

The Endogenous Cannabinoid Anandamide Produces δ-9-Tetrahydrocannabinol-Like Discriminative and Neurochemical Effects That Are Enhanced by Inhibition of Fatty Acid Amide Hydrolase but Not by Inhibition of Anandamide Transport

Marcello Solinas; Gianluigi Tanda; Zuzana Justinova; Carrie E. Wertheim; Sevil Yasar; Daniele Piomelli; Subramanian K. Vadivel; Alexandros Makriyannis; Steven R. Goldberg

Anandamide is an endogenous ligand for brain cannabinoid CB1 receptors, but its behavioral effects are difficult to measure due to rapid inactivation. Here we used a drug-discrimination procedure to test the hypothesis that anandamide, given i.v. or i.p., would produce discriminative effects like those of δ-9-tetrahydrocannabinol (THC) in rats when its metabolic inactivation was inhibited. We also used an in vivo microdialysis procedure to investigate the effects of anandamide, given i.v. or i.p., on dopamine levels in the nucleus accumbens shell in rats. When injected i.v., methanandamide (AM-356), a metabolically stable anandamide analog, produced clear dose-related THC-like discriminative effects, but anandamide produced THC-like discriminative effects only at a high 10-mg/kg dose that almost eliminated lever-press responding. Cyclohexyl carbamic acid 3′-carbamoyl-biphenyl-3-yl ester (URB-597), an inhibitor of fatty acid amide hydrolase (FAAH), the main enzyme responsible for metabolic inactivation of anandamide, produced no THC-like discriminative effects alone but dramatically potentiated discriminative effects of anandamide, with 3 mg/kg anandamide completely substituting for the THC training dose. URB-597 also potentiated the ability of anandamide to increase dopamine levels in the accumbens shell. The THC-like discriminative-stimulus effects of anandamide after URB-597 and methanandamide were blocked by the CB1 receptor antagonist rimonabant, but not the vanilloid VR1 receptor antagonist capsazepine. Surprisingly, the anandamide transport inhibitors N-(4-hydroxyphenyl)-eicosa-5,8,11,14-tetraenamide (AM-404) and N-(3-furylmethyl)eicosa-5,8,11,14-tetraenamide (UCM-707) did not potentiate THC-like discriminative effects of anandamide or its dopamine-elevating effects. Thus, anandamide has THC-like discriminative and neurochemical effects that are enhanced after treatment with a FAAH inhibitor but not after treatment with transport inhibitors, suggesting brain area specificity for FAAH versus transport/FAAH inactivation of anandamide.


The Journal of Neuroscience | 2005

The Endogenous Cannabinoid Anandamide and Its Synthetic Analog R(+)-Methanandamide Are Intravenously Self-Administered by Squirrel Monkeys

Zuzana Justinova; Marcello Solinas; Gianluigi Tanda; Godfrey H. Redhi; Steven R. Goldberg

Anandamide, an endogenous ligand for brain cannabinoid CB1 receptors, produces many behavioral effects similar to those of Δ9-tetrahydrocannabinol (THC), the main psychoactive ingredient in marijuana. Reinforcing effects of THC have been demonstrated in experimental animals, but there is only indirect evidence that endogenous cannabinoids such as anandamide participate in brain reward processes. We now show that anandamide serves as an effective reinforcer of drug-taking behavior when self-administered intravenously by squirrel monkeys. We also show that methanandamide, a synthetic long-lasting anandamide analog, similarly serves as a reinforcer of drug-taking behavior. Finally, we show that the reinforcing effects of both anandamide and methanandamide are blocked by pretreatment with the cannabinoid CB1 receptor antagonist rimonabant (SR141716). These findings strongly suggest that release of endogenous cannabinoids is involved in brain reward processes and that activation of cannabinoid CB1 receptors by anandamide could be part of the signaling of natural rewarding events.


Nature Protocols | 2006

Using drug-discrimination techniques to study the abuse-related effects of psychoactive drugs in rats

Marcello Solinas; Leigh V. Panlilio; Zuzana Justinova; Sevil Yasar; Steven R. Goldberg

Drug-discrimination (DD) techniques can be used to study abuse-related effects by establishing the interoceptive effects of a training drug (e.g., cocaine) as a cue for performing a specific operant response (e.g., lever pressing reinforced by food). During training with this protocol, pressing one lever is reinforced when the training drug is injected before the start of the session, and responding on a second lever is reinforced when vehicle is injected before the session. Lever choice during test sessions can then be used as an indication of whether a novel drug has effects similar to the training drug, or whether a potential therapeutic alters the effects of the training drug. Although training can be lengthy (up to several months), the pharmacological specificity of DD procedures make them a perfect complement to other techniques used to study drug-abuse phenomena, such as intravenous self-administration and conditioned place-preference procedures.


Biological Psychiatry | 2011

Blockade of Nicotine Reward and Reinstatement by Activation of Alpha-Type Peroxisome Proliferator-Activated Receptors

Paola Mascia; Marco Pistis; Zuzana Justinova; Leigh V. Panlilio; Antonio Luchicchi; Salvatore Lecca; Maria Scherma; Walter Fratta; Paola Fadda; Chanel Barnes; Godfrey H. Redhi; Sevil Yasar; Bernard Le Foll; Gianluigi Tanda; Daniele Piomelli; Steven R. Goldberg

BACKGROUND Recent findings indicate that inhibitors of fatty acid amide hydrolase (FAAH) counteract the rewarding effects of nicotine in rats. Inhibition of FAAH increases levels of several endogenous substances in the brain, including the endocannabinoid anandamide and the noncannabinoid fatty acid ethanolamides oleoylethanolamide (OEA) and palmitoylethanolamide, which are ligands for alpha-type peroxisome proliferator-activated nuclear receptors (PPAR-α). Here, we evaluated whether directly acting PPAR-α agonists can modulate reward-related effects of nicotine. METHODS We combined behavioral, neurochemical, and electrophysiological approaches to evaluate effects of the PPAR-α agonists [[4-Chloro-6-[(2,3-dimethylphenyl)amino]-2-pyrimidinyl]thio]acetic acid (WY14643) and methyl oleoylethanolamide (methOEA; a long-lasting form of OEA) on 1) nicotine self-administration in rats and squirrel monkeys; 2) reinstatement of nicotine-seeking behavior in rats and monkeys; 3) nicotine discrimination in rats; 4) nicotine-induced electrophysiological activity of ventral tegmental area dopamine neurons in anesthetized rats; and 5) nicotine-induced elevation of dopamine levels in the nucleus accumbens shell of freely moving rats. RESULTS The PPAR-α agonists dose-dependently decreased nicotine self-administration and nicotine-induced reinstatement in rats and monkeys but did not alter food- or cocaine-reinforced operant behavior or the interoceptive effects of nicotine. The PPAR-α agonists also dose-dependently decreased nicotine-induced excitation of dopamine neurons in the ventral tegmental area and nicotine-induced elevations of dopamine levels in the nucleus accumbens shell of rats. The ability of WY14643 and methOEA to counteract the behavioral, electrophysiological, and neurochemical effects of nicotine was reversed by the PPAR-α antagonist 1-[(4-Chlorophenyl)methyl]-3-[(1,1-dimethylethyl)thio]-a,a-dimethyl-5-(1-methylethyl)-1H-Indole-2-propanoic acid (MK886). CONCLUSIONS These findings indicate that PPAR-α might provide a valuable new target for antismoking medications.

Collaboration


Dive into the Zuzana Justinova's collaboration.

Top Co-Authors

Avatar

Steven R. Goldberg

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Leigh V. Panlilio

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Godfrey H. Redhi

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Gianluigi Tanda

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Sergi Ferré

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Sevil Yasar

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Chanel Barnes

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Charles W. Schindler

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernard Le Foll

Centre for Addiction and Mental Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge