Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Godwin A. Ayoko is active.

Publication


Featured researches published by Godwin A. Ayoko.


Journal of Colloid and Interface Science | 2011

Application of organoclays for the adsorption of recalcitrant organic molecules from aqueous media

Yuri Park; Godwin A. Ayoko; Ray L. Frost

Water purification is imperative for the welfare of a healthy population. Water is widely contaminated by recalcitrant organic chemicals such a pesticides, herbicides and hormones. One inexpensive method for purifying water from these types of molecules is through adsorption. One suite of materials for this adsorption is based upon organoclays. This paper reviews the adsorption of organics on organoclays.


Journal of Colloid and Interface Science | 2014

A review of the removal of anions and oxyanions of the halogen elements from aqueous solution by layered double hydroxides

Frederick L. Theiss; Sara J. Couperthwaite; Godwin A. Ayoko; Ray L. Frost

The application of layered double hydroxides (LDHs) and thermally activated LDHs for the removal of various fluorine (F(-),BF4(-)), chlorine (Cl(-),ClO4(-)), bromine (Br(-),BrO3(-)) and iodine (I(-),IO3(-)) species from aqueous solutions has been reviewed in this article. LDHs and thermally activated LDHs were able to significantly reduce the concentration of selected anions in laboratory scale experiments. The M(2+):M(3+) cation ratio of the LDH adsorbent was an important factor which influenced anion uptake. Though LDHs were able to remove some target anion species through anion exchange and surface adsorption thermal activation and reformation generally produced better results. The presence of competing anions including carbonate, phosphate and sulphate had a significant impact on uptake of the target anion as LDHs typically exhibit lower affinity towards monovalent anions compared to anions with multiple charges. The removal of fluoride and perchlorate from aqueous solution by a continuous flow system utilising fixed bed columns packed with LDH adsorbents has also been investigated. The adsorption capacity of the columns at breakpoint was heavily dependent on the flow rate and lower than result reported for the corresponding batch methods. There is still considerable scope for future research on numerous topics summarised in this article.


Environmental Science & Technology | 2009

Ultrafine particles in indoor air of a school: possible role of secondary organic aerosols.

Lidia Morawska; Congrong He; Graham R. Johnson; Hai Guo; Erik Uhde; Godwin A. Ayoko

The aim of this work was to investigate ultrafine particles (<0.1 microm) in primary school classrooms, in relation to the classroom activities. The investigations were conducted in three classrooms during two measuring campaigns, which together encompassed a period of 60 days. Initial investigations showed that under the normal operating conditions of the school there were many occasions in all three classrooms where indoor particle concentrations increased significantly compared to outdoor levels. By far the highest increases in the classroom resulted from art activities (painting, gluing, and drawing), at times reaching over 1.4 x 10(5) particle cm(-3). The indoor particle concentrations exceeded outdoor concentrations by approximately 1 order of magnitude, with a count median diameter ranging from 20 to 50 nm. Significant increases also occurred during cleaning activities, when detergents were used. GC-MS analysis conducted on 4 samples randomly selected from about 30 different paints and glues, as well as the detergent used in the school, showed that d-limonene was one of the main organic compounds of the detergent, however, it was not detected in the samples of the paints and the glue. Controlled experiments showed that this monoterpene, emitted from the detergent, reacted with O(3) (at outdoor ambient concentrations ranging from 0.06 to 0.08 ppm) and formed secondary organic aerosols. Further investigations to identify other liquids that may be potential sources of the precursors of secondary organic aerosols were outside the scope of this project, however, it is expected that the problem identified by this study could be more widely spread, since most primary schools use liquid materials for art classes, and all schools use detergents for cleaning. Further studies are therefore recommended to better understand this phenomenon and also to minimize exposure of school children to ultrafine particles from these indoor sources.


Journal of Colloid and Interface Science | 2011

Characterisation of organoclays and adsorption of p-nitrophenol : environmental application

Yuri Park; Godwin A. Ayoko; Ray L. Frost

Organoclays were synthesised through ion exchange of a single surfactant for sodium ions, and characterised by a range of method including X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM). The change in surface properties of montmorillonite and organoclays intercalated with the surfactant, tetradecyltrimethylammonium bromide (TDTMA) were determined using XRD through the change in basal spacing and the expansion occurred by the adsorbed p-nitrophenol. The changes of interlayer spacing were observed in TEM. In addition, the surface measurement such as specific surface area and pore volume was measured and calculated using BET method, this suggested the loaded surfactant is highly important to determine the sorption mechanism onto organoclays. The collected results of XPS provided the chemical composition of montmorillonite and organoclays, and the high-resolution XPS spectra offered the chemical states of prepared organoclays with binding energy. Using TGA and FT-IR, the confirmation of intercalated surfactant was investigated. The collected data from various techniques enable an understanding of the changes in structure and surface properties. This study is of importance to provide mechanisms for the adsorption of organic molecules, especially in contaminated environmental sites and polluted waters.


Environmental Science & Technology | 2010

Impacts of Traffic and Rainfall Characteristics on Heavy Metals Build-up and Wash-off from Urban Roads

Parvez Mahbub; Godwin A. Ayoko; Ashantha Goonetilleke; Prasanna Egodawatta; Serge Kokot

An investigation into the effects of changes in urban traffic characteristics due to rapid urbanisation and the predicted changes in rainfall characteristics due to climate change on the build-up and wash-off of heavy metals was carried out in Gold Coast, Australia. The study sites encompassed three different urban land uses. Nine heavy metals commonly associated with traffic emissions were selected. The results were interpreted using multivariate data analysis and decision making tools, such as principal component analysis (PCA), fuzzy clustering (FC), PROMETHEE, and GAIA. Initial analyses established high, low, and moderate traffic scenarios as well as low, low to moderate, moderate, high, and extreme rainfall scenarios for build-up and wash-off investigations. GAIA analyses established that moderate to high traffic scenarios could affect the build-up, while moderate to high rainfall scenarios could affect the wash-off of heavy metals under changed conditions. However, in wash-off, metal concentrations in 1-75 μm fraction were found to be independent of the changes to rainfall characteristics. In build-up, high traffic activities in commercial and industrial areas influenced the accumulation of heavy metal concentrations in particulate size range from 75 - >300 μm, whereas metal concentrations in finer size range of <1-75 μm were not affected. As practical implications, solids <1 μm and organic matter from 1 - >300 μm can be targeted for removal of Ni, Cu, Pb, Cd, Cr, and Zn from build-up, while organic matter from <1 - >300 μm can be targeted for removal of Cd, Cr, Pb, and Ni from wash-off. Cu and Zn need to be removed as free ions from most fractions in wash-off.


Journal of Hazardous Materials | 2011

Which emission sources are responsible for the volatile organic compounds in the atmosphere of Pearl River Delta

Hai Guo; H.R. Cheng; Zhen-Hao Ling; Peter K.K. Louie; Godwin A. Ayoko

A field measurement study of volatile organic compounds (VOCs) was simultaneously carried out in October-December 2007 at an inland Pearl River Delta (PRD) site and a Hong Kong urban site. A receptor model i.e. positive matrix factorization (PMF) was applied to the data for the apportionment of pollution sources in the region. Five and six sources were identified in Hong Kong and the inland PRD region, respectively. The major sources identified in the region were vehicular emissions, solvent use and biomass burning, whereas extra sources found in inland PRD included liquefied petroleum gas and gasoline evaporation. In Hong Kong, the vehicular emissions made the most significant contribution to ambient VOCs (48 ± 4%), followed by solvent use (43 ± 2%) and biomass burning (9 ± 2%). In inland PRD, the largest contributor to ambient VOCs was solvent use (46 ± 1%), and vehicular emissions contributed 26 ± 1% to ambient VOCs. The percentage contribution of vehicular emission in Hong Kong in 2007 is close to that obtained in 2001-2003, whereas in inland PRD the contribution of solvent use to ambient VOCs in 2007 was at the upper range of the results obtained in previous studies and twice the 2006 PRD emission inventory. The findings advance our knowledge of ozone precursors in the PRD region.


Journal of Colloid and Interface Science | 2013

Removal of boron species by layered double hydroxides: a review.

Frederick L. Theiss; Godwin A. Ayoko; Ray L. Frost

Boron, which is an essential element for plants, is toxic to humans and animals at high concentrations. Layered double hydroxides (LDHs) and thermally activated LDHs have shown good uptake of a range of boron species in laboratory scale experiments when compared to current available methods, which are for the most part ineffective or prohibitively expensive. LDHs were able to remove anions from water by anion exchange, the reformation (or memory) effect and direct precipitation. The main mechanism of boron uptake appeared to be anion exchange, which was confirmed by powder X-ray diffraction (XRD) measurements. Solution pH appeared to have little effect on boron sorption while thermal activation did not always significantly improve boron uptake. In addition, perpetration of numerous LDHs with varying boron anions in the interlayer region by direct co-precipitation and anion exchange have been reported by a number of groups. The composition and orientation of the interlayer boron ions could be identified with reasonable certainty by applying a number of characterisation techniques including: powder XRD, nuclear magnetic resonance spectroscopy (NMR), X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy. There is still considerable scope for future research on the application of LDHs for the removal of boron contaminants.


Green Chemistry | 2014

Visible light enhanced oxidant free dehydrogenation of aromatic alcohols using Au–Pd alloy nanoparticle catalysts

Sarina Sarina; Sagala Bai; Yiming Huang; Chao Chen; Jianfeng Jia; Esa Jaatinen; Godwin A. Ayoko; Zhaorigetu Bao; Huaiyong Zhu

We find that visible light irradiation of gold–palladium alloy nanoparticles supported on photocatalytically inert ZrO2 significantly enhances their catalytic activity for oxidant-free dehydrogenation of aromatic alcohols to the corresponding aldehydes at ambient temperatures. Dehydrogenation is also the dominant process in the selective oxidation of the alcohols to the corresponding aldehydes with molecular oxygen. The alloy nanoparticles strongly absorb light and exhibit superior catalytic and photocatalytic activity when compared to either pure palladium or gold nanoparticles. Analysis with a free electron gas model for the bulk alloy structure reveals that the alloying increases the surface charge heterogeneity on the alloy particle surface, which enhances the interaction between the alcohol molecules and the metal NPs. The increased surface charge heterogeneity of the alloy particles is confirmed with density function theory applied to small alloy clusters. Optimal catalytic activity was observed with a Au:Pd molar ratio of 1:186, which is in good agreement with the theoretical analysis. The rate-determining step of the dehydrogenation is hydrogen abstraction. The conduction electrons of the nanoparticles are photo-excited by the incident light giving them the necessary energy to be injected into the adsorbed alcohol molecules, promoting the hydrogen abstraction. The strong chemical adsorption of alcohol molecules facilitates this electron transfer. The results show that the alloy nanoparticles efficiently couple thermal and photonic energy sources to drive the dehydrogenation. These findings provide useful insight into the design of catalysts that utilize light for various organic syntheses at ambient temperatures.


Environmental Science & Technology | 2011

Physicochemical characterization of particulate emissions from a compression ignition engine: the influence of biodiesel feedstock.

Nicholas C. Surawski; Branka Miljevic; Godwin A. Ayoko; Sohair Elbagir; Svetlana Stevanovic; Kathryn E. Fairfull-Smith; Steven E. Bottle; Zoran Ristovski

This study undertook a physicochemical characterization of particle emissions from a single compression ignition engine operated at one test mode with 3 biodiesel fuels made from 3 different feedstocks (i.e., soy, tallow, and canola) at 4 different blend percentages (20%, 40%, 60%, and 80%) to gain insights into their particle-related health effects. Particle physical properties were inferred by measuring particle number size distributions both with and without heating within a thermodenuder (TD) and also by measuring particulate matter (PM) emission factors with an aerodynamic diameter less than 10 μm (PM(10)). The chemical properties of particulates were investigated by measuring particle and vapor phase Polycyclic Aromatic Hydrocarbons (PAHs) and also Reactive Oxygen Species (ROS) concentrations. The particle number size distributions showed strong dependency on feedstock and blend percentage with some fuel types showing increased particle number emissions, while others showed particle number reductions. In addition, the median particle diameter decreased as the blend percentage was increased. Particle and vapor phase PAHs were generally reduced with biodiesel, with the results being relatively independent of the blend percentage. The ROS concentrations increased monotonically with biodiesel blend percentage but did not exhibit strong feedstock variability. Furthermore, the ROS concentrations correlated quite well with the organic volume percentage of particles - a quantity which increased with increasing blend percentage. At higher blend percentages, the particle surface area was significantly reduced, but the particles were internally mixed with a greater organic volume percentage (containing ROS) which has implications for using surface area as a regulatory metric for diesel particulate matter (DPM) emissions.


Chemosphere | 2014

Bisphenol A sorption by organo-montmorillonite: implications for the removal of organic contaminants from water.

Yuri Park; Zhiming Sun; Godwin A. Ayoko; Ray L. Frost

Remediation of bisphenol A (BPA) from aqueous solutions by adsorption using organoclays synthesized from montmorillonite (MMT) with different types of organic surfactant molecules was demonstrated. High adsorption capacities of the organoclays for the uptake of BPA were observed and these demonstrated their potential application as strong adsorbents for noxious organic water contaminants. The adsorption of BPA was significantly influenced by pH, with increased adsorption of BPA in acidic pH range. However, the organoclays intercalated with highly loaded surfactants and/or large surfactant molecules were less influenced by the pH of the environment and this was thought to be due to the shielding the negative charge from surfactant molecules and the development of more positive charge on the clay surface, which leads to the attraction of anionic BPA even at alkaline pH. The hydrophobic phase created by loaded surfactant molecules contributed to a partitioning phase, interacting with BPA molecules strongly through hydrophobic interaction. Pseudo-second order kinetic model and Langmuir isotherm provided the best fit for the adsorption of BPA onto the organoclays. In addition, the adsorption process was spontaneous and exothermic with lower temperature facilitating the adsorption of BPA onto the organoclays. The described process provides a potential pathway for the removal of BPA from contaminated waters.

Collaboration


Dive into the Godwin A. Ayoko's collaboration.

Top Co-Authors

Avatar

Ashantha Goonetilleke

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Lidia Morawska

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ray L. Frost

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Prasanna Egodawatta

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Zoran Ristovski

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yunfei Xi

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Tan Yigitcanlar

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Congrong He

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

McKenzie Lim

Queensland University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge