Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gonzalo González Abad is active.

Publication


Featured researches published by Gonzalo González Abad.


Environmental Research Letters | 2014

Anthropogenic emissions of highly reactive volatile organic compounds in eastern Texas inferred from oversampling of satellite (OMI) measurements of HCHO columns

Lei Zhu; Daniel J. Jacob; Loretta J. Mickley; Eloise A. Marais; Daniel S. Cohan; Yasuko Yoshida; Bryan N. Duncan; Gonzalo González Abad; Kelly Chance

Satellite observations of formaldehyde (HCHO) columns provide top-down constraints on emissions of highly reactive volatile organic compounds (HRVOCs). This approach has been used previously in the US to estimate isoprene emissions from vegetation, but application to anthropogenic emissions has been stymied by lack of a discernable HCHO signal. Here we show that temporal oversampling of HCHO data from the Ozone Monitoring Instrument (OMI) for 2005–2008 enables detection of urban and industrial plumes in eastern Texas including Houston, Port Arthur, and Dallas/Fort Worth. By spatially integrating the HCHO enhancement in the Houston plume observed by OMI we estimate an anthropogenic HCHO source of 250±140 kmol h �1 . This implies that anthropogenic HRVOC emissions in Houston are 4.8±2.7 times higher than reported by the US Environmental Protection Agency inventory, and is consistent with field studies identifying large ethene and propene emissions from petrochemical industrial sources.


Atmospheric Chemistry and Physics | 2016

Observing atmospheric formaldehyde (HCHO) from space: validation and intercomparison of six retrievals from four satellites (OMI, GOME2A, GOME2B, OMPS) with SEAC4RS aircraft observations over the southeast US

Lei Zhu; Daniel J. Jacob; Patrick S. Kim; Jenny A. Fisher; Karen Yu; Katherine R. Travis; Loretta J. Mickley; Robert M. Yantosca; Melissa P. Sulprizio; Isabelle De Smedt; Gonzalo González Abad; Kelly Chance; Can Li; Richard A. Ferrare; Alan Fried; Johnathan W. Hair; T. F. Hanisco; Dirk Richter; Amy Jo Scarino; James G. Walega; Petter Weibring; G. M. Wolfe

Formaldehyde (HCHO) column data from satellites are widely used as a proxy for emissions of volatile organic compounds (VOCs) but validation of the data has been extremely limited. Here we use highly accurate HCHO aircraft observations from the NASA SEAC4RS campaign over the Southeast US in August-September 2013 to validate and intercompare six retrievals of HCHO columns from four different satellite instruments (OMI, GOME2A, GOME2B and OMPS) and three different research groups. The GEOS-Chem chemical transport model is used as a common intercomparison platform. All retrievals feature a HCHO maximum over Arkansas and Louisiana, consistent with the aircraft observations and reflecting high emissions of biogenic isoprene. The retrievals are also interconsistent in their spatial variability over the Southeast US (r=0.4-0.8 on a 0.5°×0.5° grid) and in their day-to-day variability (r=0.5-0.8). However, all retrievals are biased low in the mean by 20-51%, which would lead to corresponding bias in estimates of isoprene emissions from the satellite data. The smallest bias is for OMI-BIRA, which has high corrected slant columns relative to the other retrievals and low scattering weights in its air mass factor (AMF) calculation. OMI-BIRA has systematic error in its assumed vertical HCHO shape profiles for the AMF calculation and correcting this would eliminate its bias relative to the SEAC4RS data. Our results support the use of satellite HCHO data as a quantitative proxy for isoprene emission after correction of the low mean bias. There is no evident pattern in the bias, suggesting that a uniform correction factor may be applied to the data until better understanding is achieved.


Atmospheric Measurement Techniques | 2014

Glyoxal retrieval from the Ozone Monitoring Instrument

Christopher Miller; Gonzalo González Abad; Hui Wang; X. Liu; Thomas P. Kurosu; Daniel J. Jacob; Kelly Chance

We present an algorithm for the retrieval of glyoxal from backscattered solar radiation, and apply it to spectra measured by the Ozone Monitoring Instrument (OMI). The algorithm is based on direct spectrum fitting, and adopts a two-step fitting routine to account for liquid water absorption. Previous studies have shown that glyoxal retrieval algorithms are highly sensitive to the position of the spectral fit window. This dependence was systematically tested on real and simulated OMI spectra. We find that a combination of errors resulting from uncertainties in reference cross sections and spectral features associated with the Ring effect are consistent with the fit-window dependence observed in real spectra. This implies an optimal fitting window of 435–461 nm, consistent with previous satellite glyoxal retrievals. The results from the retrieval of simulated spectra also support previous findings that have suggested that glyoxal is sensitive to NO2 cross-section temperature. The retrieval window limits of the liquid water retrieval are also tested. A retrieval window 385–470 nm reduces interference with strong spectral features associated with sand. We show that cross-track dependent offsets (stripes) present in OMI can be corrected using offsets derived from retrieved slant columns over the Sahara, and apply the correction to OMI data. Average glyoxal columns are on average lower than those of previous studies likely owing to the choice of reference sector for offset correction. OMI VCDs (vertical column densities)are lower compared to other satellites over the tropics and Asia during the monsoon season, suggesting that the new retrieval is less sensitive to water vapour abundance. Consequently we do not see significant glyoxal enhancements over tropical oceans. OMI-derived glyoxal-to-formaldehyde ratios over biogenic and anthropogenic source regions are consistent with surface observations.


The Astrophysical Journal | 2014

DETECTING INDUSTRIAL POLLUTION IN THE ATMOSPHERES OF EARTH-LIKE EXOPLANETS

Henry W. Lin; Gonzalo González Abad; Abraham Loeb

Detecting biosignatures, such as molecular oxygen in combination with a reducing gas, in the atmospheres of transiting exoplanets has been a major focus in the search for alien life. We point out that in addition to these generic indicators, anthropogenic pollution could be used as a novel biosignature for intelligent life. To this end, we identify pollutants in the Earths atmosphere that have significant absorption features in the spectral range covered by the James Webb Space Telescope (JWST). We focus on tetrafluoromethane CF4 and trichlorofluoromethane (CCl3F), which are the easiest to detect chlorofluorocarbons (CFCs) produced by anthropogenic activity. We estimate that ~1.2 days (~1.7 days) of total integration time will be sufficient to detect or constrain the concentration of CCl3F (CF4) to ~10 times current terrestrial level.


Journal of Geophysical Research | 2016

The role of OH production in interpreting the variability of CH2O columns in the southeast U.S.

L. C. Valin; Arlene M. Fiore; Kelly Chance; Gonzalo González Abad

Formaldehyde (CH2O), a key atmospheric oxidation intermediate that is detectable from satellite-based UV/visible spectrometers, is primarily formed when hydroxyl radical (OH) reacts with volatile organic compounds (VOC) and is removed by photolysis, reaction with OH or deposition. We investigate the influence of OH and VOC variability on the CH2O column using a steady state model and the WRF-Chem regional chemical transport model over the southeast United States for the summer of 2012 (June–August). The steady state model indicates that the CH2O column primarily depends on OH production rates (POH) at low concentrations of OH ( 7 × 106 molecules cm−3). When constrained with WRF-Chem values of boundary layer average POH and VOCR, the steady state model of CH2O explains most of the daily (r2 = 0.93) and average June–August (r2 = 0.97) spatial variance of the fully simulated cloud-free CH2O column. These findings imply that measurements of the CH2O column offer the potential to better understand the processes affecting oxidation, particularly in remote regions, where OH concentrations are low. The findings also suggest that the inference of VOC emissions based on measurements of CH2O, or any other intermediate oxidation species with a photolytic lifetime that is short relative to removal by reaction with OH (e.g., glyoxal), should carefully account for the influence of OH on the observed pattern, especially where OH concentrations are below 5 × 106 molecules cm−3, as occurs in remote forests, where OH strongly varies, as occurs downwind of large nitrogen oxide (NOx: NO+NO2) emission sources, or where OH sources are potentially biased.


Environmental Science & Technology | 2017

Formaldehyde (HCHO) As a Hazardous Air Pollutant: Mapping Surface Air Concentrations from Satellite and Inferring Cancer Risks in the United States

Lei Zhu; Daniel J. Jacob; Frank N. Keutsch; Loretta J. Mickley; Richard D. Scheffe; Madeleine Strum; Gonzalo González Abad; Kelly Chance; Kai Yang; Bernhard Rappenglück; Dylan B. Millet; Munkhbayar Baasandorj; Lyatt Jaeglé; Viral Shah

Formaldehyde (HCHO) is the most important carcinogen in outdoor air among the 187 hazardous air pollutants (HAPs) identified by the U.S. Environmental Protection Agency (EPA), not including ozone and particulate matter. However, surface observations of HCHO are sparse and the EPA monitoring network could be prone to positive interferences. Here we use 2005-2016 summertime HCHO column data from the OMI satellite instrument, validated with high-quality aircraft data and oversampled on a 5 × 5 km2 grid, to map surface air HCHO concentrations across the contiguous U.S. OMI-derived summertime HCHO values are converted to annual averages using the GEOS-Chem chemical transport model. Results are in good agreement with high-quality summertime observations from urban sites (-2% bias, r = 0.95) but a factor of 1.9 lower than annual means from the EPA network. We thus estimate that up to 6600-12 500 people in the U.S. will develop cancer over their lifetimes by exposure to outdoor HCHO. The main HCHO source in the U.S. is atmospheric oxidation of biogenic isoprene, but the corresponding HCHO yield decreases as the concentration of nitrogen oxides (NOx ≡ NO + NO2) decreases. A GEOS-Chem sensitivity simulation indicates that HCHO levels would decrease by 20-30% in the absence of U.S. anthropogenic NOx emissions. Thus, NOx emission controls to improve ozone air quality have a significant cobenefit in reducing HCHO-related cancer risks.


Applied Optics | 2012

Spatiotemporal structure of a laser beam over 144 km in a Canary Islands experiment

Alexandre S. Gurvich; Michael E. Gorbunov; O. V. Fedorova; Gottfried Kirchengast; Veronika Proschek; Gonzalo González Abad; Keith Tereszchuk

We analyzed the observations of scintillations in a laser beam (532 nm, ~200 mW power) traveling along a 144 km path at an altitude of 2.2-2.4 km above sea level, just above the atmospheric boundary layer, between the islands of La Palma and Tenerife. The observations were performed during nighttime on 18 July 2011, by means of a telescope with an aperture diameter of 1 m. Strong scintillations were observed. The estimates of spatial spectra and correlation functions indicated that the observed intensity fields possess, statistically, a locally isotropic structure, which agrees with the idea of a locally isotropic turbulence. The estimates of spatial autospectra and autocorrelation functions of the intensity field indicated that the characteristic scale of the internal structure of the observed clusters is 6.5-8 mm, while the characteristic size of the clusters is 4-5 cm. The major contribution to the observed scintillations comes from the inhomogeneities of the intensity field with scales from 1-2 cm up to 10-12 cm. The analysis of the cross-spectra indicated that the hypothesis of frozen turbulence introduced by Taylor can be used for the description of spatiotemporal structure of intensity fluctuations of laser beams traveling through long paths in the atmosphere.


Journal of Geophysical Research | 2017

Evaluating a Space‐Based Indicator of Surface Ozone‐NOx‐VOC Sensitivity Over Midlatitude Source Regions and Application to Decadal Trends

Xiaomeng Jin; Arlene M. Fiore; Lee T. Murray; Lukas C. Valin; Lok N. Lamsal; Bryan N. Duncan; K. Folkert Boersma; Isabelle De Smedt; Gonzalo González Abad; Kelly Chance; Gail Tonnesen

Determining effective strategies for mitigating surface ozone (O3) pollution requires knowledge of the relative ambient concentrations of its precursors, NO x , and VOCs. The space-based tropospheric column ratio of formaldehyde to NO2 (FNR) has been used as an indicator to identify NO x -limited versus NO x -saturated O3 formation regimes. Quantitative use of this indicator ratio is subject to three major uncertainties: (1) the split between NO x -limited and NO x -saturated conditions may shift in space and time, (2) the ratio of the vertically integrated column may not represent the near-surface environment, and (3) satellite products contain errors. We use the GEOS-Chem global chemical transport model to evaluate the quantitative utility of FNR observed from the Ozone Monitoring Instrument over three northern midlatitude source regions. We find that FNR in the model surface layer is a robust predictor of the simulated near-surface O3 production regime. Extending this surface-based predictor to a column-based FNR requires accounting for differences in the HCHO and NO2 vertical profiles. We compare four combinations of two OMI HCHO and NO2 retrievals with modeled FNR. The spatial and temporal correlations between the modeled and satellite-derived FNR vary with the choice of NO2 product, while the mean offset depends on the choice of HCHO product. Space-based FNR indicates that the spring transition to NO x -limited regimes has shifted at least a month earlier over major cities (e.g., New York, London, and Seoul) between 2005 and 2015. This increase in NO x sensitivity implies that NO x emission controls will improve O3 air quality more now than it would have a decade ago.


Spectroscopy | 2015

Analysis of ACAM Data for Trace Gas Retrievals during the 2011 DISCOVER-AQ Campaign

Cheng Liu; Xiong Liu; Matthew G. Kowalewski; Scott J. Janz; Gonzalo González Abad; K. E. Pickering; Kelly Chance; Lok Lamsal

To improve the trace gas retrieval from Airborne Compact Atmospheric Mapper (ACAM) during the DSICOVER-AQ campaigns, we characterize the signal to noise ratio (SNR) of the ACAM measurement. From the standard deviations of the fitting residuals, the SNRs of ACAM nadir measurements are estimated to vary from ~300 at 310 nm to ~1000 in the blue spectral region; the zenith data are noisier due to reduced levels of illumination and lower system throughput and also show many more pixels with abrupt anomalous values; therefore, a new method is developed to derive a solar irradiance reference at the top of the atmosphere (TOA) from average nadir measurements, at instrument spectral resolution and including instrument calibration characteristics. Using this reference can significantly reduce fitting residuals and improve the retrievals. This approach derives an absolute reference for direct fitting algorithms involving radiative transfer calculations and thus can be applied to both aircraft and ground-based measurements. The comparison of ACAM radiance with simulations using coincident ozonesonde and OMI data shows large wavelength-dependent biases in ACAM data, varying from ~−19% at 310 nm to 5% at 360 nm. Correcting ACAM radiance in direct-fitting based ozone profile algorithm significantly improves the consistency with OMI total ozone.


Geophysical Research Letters | 2017

Long‐term (2005–2014) trends in formaldehyde (HCHO) columns across North America as seen by the OMI satellite instrument: Evidence of changing emissions of volatile organic compounds

Lei Zhu; Loretta J. Mickley; Daniel J. Jacob; Eloise A. Marais; Jian-Xiong Sheng; Lu Hu; Gonzalo González Abad; Kelly Chance

Satellite observations of formaldehyde (HCHO) columns provide top-down information on emissions of highly reactive volatile organic compounds (VOCs). We examine the long-term trends in HCHO columns observed by the Ozone Monitoring Instrument (OMI) from 2005 to 2014 across North America. Biogenic isoprene is the dominant source of HCHO and its emission has a large temperature dependence. After correcting for this dependence, we find a general pattern of increases in much of North America but decreases in the southeastern US. Over the Houston-Galveston-Brazoria industrial area, HCHO columns decreased by 2.2% a-1 from 2005 to 2014, consistent with trends in emissions of anthropogenic VOCs. Over the Cold Lake Oil Sands in the southern Alberta in Canada, HCHO columns increased by 3.8% a-1, consistent with the increase in crude oil production there. HCHO variability in the northwestern US and Midwest could be related to afforestation and corn silage production. Although NOx levels can affect the HCHO yield from isoprene oxidation, we find that decreases in anthropogenic NOx emissions made only a small contribution to the observed HCHO trends.

Collaboration


Dive into the Gonzalo González Abad's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel J. Jacob

Universities Space Research Association

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huiqun Wang

Smithsonian Astrophysical Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott J. Janz

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge