Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kelly Chance is active.

Publication


Featured researches published by Kelly Chance.


Journal of Quantitative Spectroscopy & Radiative Transfer | 1998

THE HITRAN MOLECULAR SPECTROSCOPIC DATABASE AND HAWKS (HITRAN ATMOSPHERIC WORKSTATION): 1996 EDITION

Laurence S. Rothman; C. P. Rinsland; A. Goldman; S. T. Massie; David P. Edwards; J.-M. Flaud; A. Perrin; C. Camy-Peyret; V. Dana; J.-Y. Mandin; John W. Schroeder; A. Mccann; Robert R. Gamache; R. B. Wattson; K. Yoshino; Kelly Chance; Kenneth W. Jucks; Lynn Brown; Vassilii Nemtchinov; P. Varanasi

Since its first publication in 1973, the HITRAN molecular spectroscopic database has been recognized as the international standard for providing the necessary fundamental spectroscopic parameters for diverse atmospheric and laboratory transmission and radiance calculations. There have been periodic editions of HITRAN over the past decades as the database has been expanded and improved with respect to the molecular species and spectral range covered, the number of parameters included, and the accuracy of this information. The 1996 edition not only includes the customary line-by-line transition parameters familiar to HITRAN users, but also cross-section data, aerosol indices of refraction, software to filter and manipulate the data, and documentation. This paper describes the data and features that have been added or replaced since the previous edition of HITRAN. We also cite instances of critical data that are forthcoming.


Journal of the Atmospheric Sciences | 1999

SCIAMACHY: Mission Objectives and Measurement Modes

Heinrich Bovensmann; J. P. Burrows; Michael Buchwitz; J. Frerick; Stefan Noel; Vladimir V. Rozanov; Kelly Chance; Albert P. H. Goede

Abstract SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography) is a spectrometer designed to measure sunlight transmitted, reflected, and scattered by the earth’s atmosphere or surface in the ultraviolet, visible, and near-infrared wavelength region (240–2380 nm) at moderate spectral resolution (0.2–1.5 nm, λ/Δλ ≈ 1000–10 000). SCIAMACHY will measure the earthshine radiance in limb and nadir viewing geometries and solar or lunar light transmitted through the atmosphere observed in occultation. The extraterrestrial solar irradiance and lunar radiance will be determined from observations of the sun and the moon above the atmosphere. The absorption, reflection, and scattering behavior of the atmosphere and the earth’s surface is determined from comparison of earthshine radiance and solar irradiance. Inversion of the ratio of earthshine radiance and solar irradiance yields information about the amounts and distribution of important atmospheric constituents and the spectral reflecta...


Journal of Quantitative Spectroscopy & Radiative Transfer | 2003

The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001

Laurence S. Rothman; A. Barbe; D. Chris Benner; Linda R. Brown; C. Camy-Peyret; Michel Carleer; Kelly Chance; Cathy Clerbaux; V. Dana; V.M. Devi; André Fayt; J.-M. Flaud; Robert R. Gamache; Aaron Goldman; D. Jacquemart; Kenneth W. Jucks; Walter J. Lafferty; J.-Y. Mandin; S. T. Massie; Vassilii Nemtchinov; David A. Newnham; A. Perrin; C. P. Rinsland; John W. Schroeder; Kevin M. Smith; M. A. H. Smith; K. Tang; Robert A. Toth; J. Vander Auwera; P. Varanasi

This paper describes the status circa 2001, of the HITRAN compilation that comprises the public edition available through 2001. The HITRAN compilation consists of several components useful for radiative transfer calculation codes: high-resolution spectroscopic parameters of molecules in the gas phase, absorption cross-sections for molecules with very dense spectral features, aerosol refractive indices, ultraviolet line-by-line parameters and absorption cross-sections, and associated database management software. The line-by-line portion of the database contains spectroscopic parameters for 38 molecules and their isotopologues and isotopomers suitable for calculating atmospheric transmission and radiance properties. Many more molecular species are presented in the infrared cross-section data than in the previous edition, especially the chlorofluorocarbons and their replacement gases. There is now sufficient representation so that quasi-quantitative simulations can be obtained with the standard radiance codes. In addition to the description and justification of new or modified data that have been incorporated since the last edition of HITRAN (1996), future modifications are indicated for cases considered to have a significant impact on remote-sensing experiments


Proceedings of SPIE | 1998

The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation)

Laurence S. Rothman; C. P. Rinsland; Aaron Goldman; S. T. Massie; David P. Edwards; J.-M. Flaud; A. Perrin; C. Camy-Peyret; V. Dana; Y.-Y. Mandin; John W. Schroeder; Robert R. Gamache; R. B. Wattson; K. Yoshino; Kelly Chance; Kenneth W. Jucks; Lynn Brown; Vassilii Nemtchinov; P. Varanasi

Nineteen ninety-eight marks the 25th anniversary of the release of the first HITRAN database. HITRAN is recognized as the international standard of the fundamental spectroscopic parameters for diverse atmospheric and laboratory transmission and radiance calculations. There have been periodic editions of HITRAN over the past decades as the database has been expanded and improved with respect to the molecular species and spectral range covered, the number of parameters included, and the accuracy of this information. The 1996 edition not only includes the customary line-by-line transition parameters familiar to HITRAN users, but also cross-section data, aerosol indices of refraction, software to filter and manipulate the data, and documentation. This paper describes the data and features that have been added or replaced since the previous edition of HITRAN. We also cite instances of critical data that is forthcoming. A new release is planned for 1998.


Journal of Geophysical Research | 2002

An improved retrieval of tropospheric nitrogen dioxide from GOME

Randall V. Martin; Kelly Chance; Daniel J. Jacob; Thomas P. Kurosu; Robert Spurr; Eric John Bucsela; James F. Gleason; Paul I. Palmer; Isabelle Bey; Arlene M. Fiore; Qinbin Li; Robert M. Yantosca; Robert B. A. Koelemeijer

[1] We present a retrieval of tropospheric nitrogen dioxide (NO2) columns from the Global Ozone Monitoring Experiment (GOME) satellite instrument that improves in several ways over previous retrievals, especially in the accounting of Rayleigh and cloud scattering. Slant columns, which are directly fitted without low-pass filtering or spectral smoothing, are corrected for an artificial offset likely induced by spectral structure on the diffuser plate of the GOME instrument. The stratospheric column is determined from NO2 columns over the remote Pacific Ocean to minimize contamination from tropospheric NO2. The air mass factor (AMF) used to convert slant columns to vertical columns is calculated from the integral of the relative vertical NO2 distribution from a global 3-D model of tropospheric chemistry driven by assimilated meteorological data (Global Earth Observing System (GEOS)-CHEM), weighted by altitude-dependent scattering weights computed with a radiative transfer model (Linearized Discrete Ordinate Radiative Transfer), using local surface albedos determined from GOME observations at NO2 wavelengths. The AMF calculation accounts for cloud scattering using cloud fraction, cloud top pressure, and cloud optical thickness from a cloud retrieval algorithm (GOME Cloud Retrieval Algorithm). Over continental regions with high surface emissions, clouds decrease the AMF by 20– 30% relative to clear sky. GOME is almost twice as sensitive to tropospheric NO2 columns over ocean than over land. Comparison of the retrieved tropospheric NO2 columns for July 1996 with GEOS-CHEM values tests both the retrieval and the nitrogen oxide radical


Applied Optics | 1997

Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum

Kelly Chance; Robert Spurr

Improved parameters for the description of Rayleigh scattering in air and for the detailed rotational Raman scattering component for scattering by O(2) and N(2) are presented for the wavelength range 200-1000 nm. These parameters enable more accurate calculations to be made of bulk molecular scattering and of the Ring effect for a variety of atmospheric radiative transfer and constituent retrieval applications. A solar reference spectrum with accurate absolute vacuum wavelength calibration, suitable for convolution with the rotational Raman spectrum for Ring effect calculations, has been produced at 0.01-nm resolution from several sources. It is convolved with the rotational Raman spectra of O(2) and N(2) to produce an atmospheric Ring effect source spectrum.


Journal of Geophysical Research | 2003

Mapping isoprene emissions over North America using formaldehyde column observations from space

Paul I. Palmer; Daniel J. Jacob; Arlene M. Fiore; Randall V. Martin; Kelly Chance; Thomas P. Kurosu

good simulation of both the GOME data (r 2 = 0.69, n = 756, bias = +11%) and the in situ summertimeHCHOmeasurementsoverNorthAmerica(r 2 =0.47,n=10,bias= � 3%).The GOMEobservationsshowhighvaluesoverregionsofknownhighisoprene emissions anda day-to-day variability that is consistent with the temperature dependence of isoprene emission. Isoprene emissions inferred from the GOME data are 20% less than GEIA on average over North America and twice those from the U.S. EPA Biogenic Emissions Inventory System (BEIS2) inventory. The GOME isoprene inventory when implemented in the GEOS-CHEM model provides a better simulation of the HCHO in situ measurements thaneitherGEIAorBEIS2(r 2 =0.71,n=10,bias= � 10%). INDEXTERMS:0312Atmospheric Composition and Structure: Air/sea constituent fluxes (3339, 4504); 0345 Atmospheric Composition and Structure: Pollution—urban and regional (0305);0365 Atmospheric Composition and Structure: Troposphere— composition and chemistry; 0394 Atmospheric Composition and Structure: Instruments and techniques; 0399 Atmospheric Composition and Structure: General or miscellaneous; KEYWORDS: Isoprene, Formaldehyde, GOME, biogenic emissions, satellite instrument, volatile organic compounds


Faraday Discussions | 2005

Global partitioning of NOx sources using satellite observations: relative roles of fossil fuel combustion, biomass burning and soil emissions.

Lyatt Jaeglé; Linda Steinberger; Randall V. Martin; Kelly Chance

We use space-based observations of NO2 columns from the Global Ozone Monitoring Experiment (GOME) to derive monthly top-down NOx emissions for 2000 via inverse modeling with the GEOS-CHEM chemical transport model. Top-down NOx sources are partitioned among fuel combustion (fossil fuel and biofuel), biomass burning and soils by exploiting the spatio-temporal distribution of remotely sensed fires and a priori information on the location of regions dominated by fuel combustion. The top-down inventory is combined with an a priori inventory to obtain an optimized a posteriori estimate of the relative roles of NOx sources. The resulting a posteriori fuel combustion inventory (25.6 TgN year(-1)) agrees closely with the a priori (25.4 TgN year(-1)), and errors are reduced by a factor of 2, from +/- 80% to +/- 40%. Regionally, the largest differences are found over Japan and South Africa, where a posteriori estimates are 25% larger than a priori. A posteriori fuel combustion emissions are aseasonal, with the exception of East Asia and Europe where winter emissions are 30-40% larger relative to summer emissions, consistent with increased energy use during winter for heating. Global a posteriori biomass burning emissions in 2000 resulted in 5.8 TgN (compared to 5.9 TgN year(-1) in the a priori), with Africa accounting for half of this total. A posteriori biomass burning emissions over Southeast Asia/India are decreased by 46% relative to a priori; but over North equatorial Africa they are increased by 50%. A posteriori estimates of soil emissions (8.9 TgN year(-1)) are 68% larger than a priori (5.3 TgN year(-1)). The a posteriori inventory displays the largest soil emissions over tropical savanna/woodland ecosystems (Africa), as well as over agricultural regions in the western U.S. (Great Plains), southern Europe (Spain, Greece, Turkey), and Asia (North China Plain and North India), consistent with field measurements. Emissions over these regions are highest during summer at mid-latitudes and during the rainy season in the Tropics. We estimate that 2.5-4.5 TgN year(-1) are emitted from N-fertilized soils, at the upper end of previous estimates. Soil and biomass burning emissions account for 22% and 14% of global surface NOx emissions, respectively. We infer a significant role for soil NOx emissions at northern mid-latitudes during summer, where they account for nearly half that of the fuel combustion source, a doubling relative to the a priori. The contribution of soil emissions to background ozone is thus likely to be underestimated by the current generation of chemical transport models.


Journal of Geophysical Research | 2006

Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column

Paul I. Palmer; Dorian S. Abbot; Tzung-May Fu; Daniel J. Jacob; Kelly Chance; Thomas P. Kurosu; Alex Guenther; Christine Wiedinmyer; Jenny Stanton; Michael J. Pilling; Shelley Pressley; Brian K. Lamb; Anna Louise Sumner

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, D12315, doi:10.1029/2005JD006689, 2006 Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column Paul I. Palmer, 1,2 Dorian S. Abbot, 1 Tzung-May Fu, 1 Daniel J. Jacob, 1 Kelly Chance, 3 Thomas P. Kurosu, 3 Alex Guenther, 4 Christine Wiedinmyer, 4 Jenny C. Stanton, 5 Michael J. Pilling, 5 Shelley N. Pressley, 6 Brian Lamb, 6 and Anne Louise Sumner 7 Received 20 September 2005; revised 19 December 2005; accepted 14 February 2006; published 27 June 2006. [ 1 ] Quantifying isoprene emissions using satellite observations of the formaldehyde (HCHO) columns is subject to errors involving the column retrieval and the assumed relationship between HCHO columns and isoprene emissions, taken here from the GEOS- CHEM chemical transport model. Here we use a 6-year (1996–2001) HCHO column data set from the Global Ozone Monitoring Experiment (GOME) satellite instrument to (1) quantify these errors, (2) evaluate GOME-derived isoprene emissions with in situ flux measurements and a process-based emission inventory (Model of Emissions of Gases and Aerosols from Nature, MEGAN), and (3) investigate the factors driving the seasonal and interannual variability of North American isoprene emissions. The error in the GOME HCHO column retrieval is estimated to be 40%. We use the Master Chemical Mechanism (MCM) to quantify the time-dependent HCHO production from isoprene, a- and b-pinenes, and methylbutenol and show that only emissions of isoprene are detectable by GOME. The time-dependent HCHO yield from isoprene oxidation calculated by MCM is 20–30% larger than in GEOS-CHEM. GOME-derived isoprene fluxes track the observed seasonal variation of in situ measurements at a Michigan forest site with a 30% bias. The seasonal variation of North American isoprene emissions during 2001 inferred from GOME is similar to MEGAN, with GOME emissions typically 25% higher (lower) at the beginning (end) of the growing season. GOME and MEGAN both show a maximum over the southeastern United States, but they differ in the precise location. The observed interannual variability of this maximum is 20–30%, depending on month. The MEGAN isoprene emission dependence on surface air temperature explains 75% of the month-to-month variability in GOME-derived isoprene emissions over the southeastern United States during May–September 1996–2001. Citation: Palmer, P. I., et al. (2006), Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column, J. Geophys. Res., 111, D12315, doi:10.1029/2005JD006689. 1. Introduction [ 2 ] Emissions of volatile organic compounds (VOCs) from the terrestrial biosphere have important implications Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA. Now at the School of Earth and Environment, University of Leeds, Leeds, UK. Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachu- setts, USA. National Center for Atmospheric Research, Boulder, Colorado, USA. Department of Chemistry, University of Leeds, Leeds, UK. Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington, USA. Battelle, Columbus, Ohio, USA. Copyright 2006 by the American Geophysical Union. 0148-0227/06/2005JD006689 for tropospheric ozone (O 3 ) [Wang and Shallcross, 2000], organic aerosols [Claeys et al., 2004], and climate change [Sanderson et al., 2003]. Local VOC emission data, representative of scales less than 1 km, are difficult to extrapolate, and consequently the magnitude and variabil- ity of these emissions is not well understood on conti- nental scales. Standard emission inventories based on ecosystem data and emission factors [Guenther et al., 2005] are poorly constrained. We have shown previously that observations of formaldehyde (HCHO) columns from the Global Ozone Monitoring Experiment (GOME) satel- lite instrument [Chance et al., 2000] provide information to estimate biogenic VOC emissions, specifically isoprene emissions, on a global scale and with resolution of the order of 100 km [Palmer et al., 2003]. We examine here the quantitative value of these data for better understand- D12315 1 of 14


Geophysical Research Letters | 2000

Satellite observations of formaldehyde over North America from GOME

Kelly Chance; Paul I. Palmer; Robert Spurr; Randall V. Martin; Thomas P. Kurosu; Daniel J. Jacob

Formaldehyde (HCHO) is an important indicator of tropospheric hydrocarbon emissions and photochemical activity. We present HCHO observations over North America for July 1996 from the GOME instrument on-board the ESA ERS-2 satellite. Slant columns are determined to < 4 × 1015 molecules cm−2 sensitivity by directly fitting GOME radiance measurements. These show a distinct enhancement over the southeastern United States, consistent with a large regional source from oxidation of non-methane hydrocarbons including in particular isoprene. Conversion of slant to vertical columns is done by combining species vertical distribution information from the GEOS-CHEM 3-D tropospheric chemistry and transport model with scattering weights from the Smithsonian Astrophysical Observatory LIDORT multiple scattering radiative transfer model. The results demonstrate the ability to measure HCHO from space in typical continental atmospheres, and imply that space-based measurements of HCHO may provide valuable information on emission fluxes of reactive hydrocarbons.

Collaboration


Dive into the Kelly Chance's collaboration.

Top Co-Authors

Avatar

Thomas P. Kurosu

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wesley A. Traub

Jet Propulsion Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge