Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gopal Saha is active.

Publication


Featured researches published by Gopal Saha.


Molecular Genetics and Genomics | 2015

Identification and expression analysis of WRKY family genes under biotic and abiotic stresses in Brassica rapa

Md. Abdul Kayum; Hee-Jeong Jung; Jong-In Park; Nasar Uddin Ahmed; Gopal Saha; Tae Jin Yang; Ill-Sup Nou

WRKY proteins constitute one of the largest transcription factor families in higher plants, and they are involved in multiple biological processes such as plant development, metabolism, and responses to biotic and abiotic stresses. Genes of this family have been well documented in response to many abiotic and biotic stresses in many plant species, but not yet against Pectobacterium carotovorum subsp. carotovorum and Fusarium oxysporum f.sp. conglutinans in any of the plants. Moreover, potentiality of a specific gene may vary depending on stress conditions and genotypes. To identify stress resistance-related potential WRKY genes of Brassica rapa, we analyzed their expressions against above-mentioned pathogens and cold, salt, and drought stresses in B. rapa. Stress resistance-related functions of all Brassica rapa WRKY (BrWRKY) genes were firstly analyzed through homology study with existing biotic and abiotic stress resistance-related WRKY genes of other plant species and found a high degree of homology. We then identified all BrWRKY genes in a Br135K microarray dataset, which was created by applying low-temperature stresses to two contrasting Chinese cabbage doubled haploid (DH) lines, Chiifu and Kenshin, and selected 41 BrWRKY genes with high and differential transcript abundance levels. These selected genes were further investigated under cold, salt, and drought stresses as well as after infection with P. carotovorum subsp. carotovorum and F. oxysporum f.sp. conglutinans in B. rapa. The selected genes showed an organ-specific expression, and 22 BrWRKY genes were differentially expressed in Chiifu compared to Kenshin under cold and drought stresses. Six BrWRKY genes were more responsive in Kenshin compared to Chiffu under salt stress. In addition, eight BrWRKY genes showed differential expression after P. carotovorum subsp. carotovorum infection and five genes after F. oxysporum f.sp. conglutinans infection in B. rapa. Thus, the differentially expressed BrWRKY genes might be potential resources for molecular breeding of Brassica crops against abiotic and biotic stresses and several genes, which showed differential expressions commonly in response to several stresses, might be useful for multiple stress resistance. These findings would also be helpful in resolving the complex regulatory mechanism of WRKY genes in stress resistance and for this further functional genomics study of these potential genes in different Brassica crops is essential.


BMC Genomics | 2015

Genome-wide identification and characterization of MADS-box family genes related to organ development and stress resistance in Brassica rapa

Gopal Saha; Jong-In Park; Hee-Jeong Jung; Nasar Uddin Ahmed; Md. Abdul Kayum; Mi-Young Chung; Yoonkang Hur; Yong-Gu Cho; Masao Watanabe; Ill-Sup Nou

BackgroundMADS-box transcription factors (TFs) are important in floral organ specification as well as several other aspects of plant growth and development. Studies on stress resistance-related functions of MADS-box genes are very limited and no such functional studies in Brassica rapa have been reported. To gain insight into this gene family and to elucidate their roles in organ development and stress resistance, we performed genome-wide identification, characterization and expression analysis of MADS-box genes in B. rapa.ResultsWhole-genome survey of B. rapa revealed 167 MADS-box genes, which were categorized into type I (Mα, Mβ and Mγ) and type II (MIKCc and MIKC*) based on phylogeny, protein motif structure and exon-intron organization. Expression analysis of 89 MIKCc and 11 MIKC* genes was then carried out. In addition to those with floral and vegetative tissue expression, we identified MADS-box genes with constitutive expression patterns at different stages of flower development. More importantly, from a low temperature-treated whole-genome microarray data set, 19 BrMADS genes were found to show variable transcript abundance in two contrasting inbred lines of B. rapa. Among these, 13 BrMADS genes were further validated and their differential expression was monitored in response to cold stress in the same two lines via qPCR expression analysis. Additionally, the set of 19 BrMADS genes was analyzed under drought and salt stress, and 8 and 6 genes were found to be induced by drought and salt, respectively.ConclusionThe extensive annotation and transcriptome profiling reported in this study will be useful for understanding the involvement of MADS-box genes in stress resistance in addition to their growth and developmental functions, which ultimately provides the basis for functional characterization and exploitation of the candidate genes for genetic engineering of B. rapa.


Molecular Genetics and Genomics | 2015

Characterization and stress-induced expression analysis of Alfin-like transcription factors in Brassica rapa

Md. Abdul Kayum; Jong-In Park; Nasar Uddin Ahmed; Hee-Jeong Jung; Gopal Saha; Jong-Goo Kang; Ill-Sup Nou

AbstractThe Alfin-like (AL) transcription factors (TFs) family is involved in many developmental processes, including the growth and development of roots, root hair elongation, meristem development, etc. However, stress resistance-related function and the regulatory mechanism of these TFs have yet to be elucidated. This study identified 15 Brassica rapa AL (BrAL) TFs from BRAD database, analyzed the sequences and profiled their expression first time in response to Fusarium oxysporum f. sp. conglutinans and Pectobacterium carotovorum subsp. carotovorum in fection, cold, salt and drought stresses in B. rapa. Structural and phylogenetic analyses of 15 BrAL TFs revealed four distinct groups (groups I–IV) with AL TFs of Arabidopsis thaliana. In the expression analyses, ten BrAL TFs showed responsive expression after F. oxysporum f. sp. conglutinans infection, while all BrAL TFs showed responses under cold, salt and drought stresses in B. rapa. Interestingly, ten BrAL TFs showed responses to both biotic and abiotic stress factors tested here. The differentially expressed BrAL TFs thus represent potential resources for molecular breeding of Brassica crops resistant against abiotic and biotic stresses. Our findings will also help to elucidate the complex regulatory mechanism of AL TFs in stress resistance and provide a foundation for further functional genomics studies and applications.


Frontiers in Plant Science | 2016

A Genome-Wide Analysis Reveals Stress and Hormone Responsive Patterns of TIFY Family Genes in Brassica rapa.

Gopal Saha; Jong-In Park; Md. Abdul Kayum; Ill-Sup Nou

The TIFY family is a plant-specific group of proteins with a diversity of functions and includes four subfamilies, viz. ZML, TIFY, PPD, and JASMONATE ZIM-domain (JAZ) proteins. TIFY family members, particularly JAZ subfamily proteins, play roles in biological processes such as development and stress and hormone responses in Arabidopsis, rice, chickpea, and grape. However, there is no information about this family in any Brassica crop. This study identifies 36 TIFY genes in Brassica rapa, an economically important crop species in the Brassicaceae. An extensive in silico analysis of phylogenetic grouping, protein motif organization and intron-exon distribution confirmed that there are four subfamilies of BrTIFY proteins. Out of 36 BrTIFY genes, we identified 21 in the JAZ subfamily, seven in the TIFY subfamily, six in ZML and two in PPD. Extensive expression profiling of 21 BrTIFY JAZs in various tissues, especially in floral organs and at different flower growth stages revealed constitutive expression patterns, which suggest that BrTIFY JAZ genes are important during growth and development of B. rapa flowers. A protein interaction network analysis also pointed to association of these proteins with fertility and defense processes of B. rapa. Using a low temperature-treated whole-genome microarray data set, most of the JAZ genes were found to have variable transcript abundance between the contrasting inbred lines Chiifu and Kenshin of B. rapa. Subsequently, the expression of all 21 BrTIFY JAZs in response to cold stress was characterized in the same two lines via qPCR, demonstrating that nine genes were up-regulated. Importantly, the BrTIFY JAZs showed strong and differential expression upon JA treatment, pointing to their probable involvement in JA-mediated growth regulatory functions, especially during flower development and stress responses. Additionally, BrTIFY JAZs were induced in response to salt, drought, Fusarium, ABA, and SA treatments, and six genes (BrTIFY3a, 3b, 6a, 9a, 9b, and 9c) were identified to have co-responsive expression patterns. The extensive annotation and transcriptome profiling reported in this study will be useful for understanding the involvement of TIFY genes in stress resistance and different developmental functions, which ultimately provides the basis for functional characterization and exploitation of the candidate TIFY genes for genetic engineering of B. rapa.


Plant Physiology and Biochemistry | 2016

Characterization and expression profiling of MYB transcription factors against stresses and during male organ development in Chinese cabbage (Brassica rapa ssp. pekinensis).

Gopal Saha; Jong-In Park; Nasar Uddin Ahmed; Abdul Kayum; Kwon-Kyoo Kang; Ill-Sup Nou

MYB proteins comprise a large family of plant transcription factors that play regulatory roles in different biological processes such as plant development, metabolism, and defense responses. To gain insight into this gene superfamily and to elucidate its roles in stress resistance, we performed a comprehensive genome-wide identification, characterization, and expression analysis of MYB genes in Chinese cabbage (Brassica rapa ssp. pekinensis). We identified 475 Chinese cabbage MYB genes, among which most were from R2R3-MYB (256 genes) and MYB-related (202) subfamilies. Analysis of sequence characteristics, phylogenetic classification, and protein motif structures confirmed the existence of several categories (1R, 2R, 3R, 4R, and 5R) of Chinese cabbage MYB genes, which is comparable with MYB genes of other crops. An extensive in silico functional analysis, based on established functional properties of MYB genes from different crop species, revealed 11 and four functional clades within the Chinese cabbage R2R3-MYB and MYB-related subfamilies, respectively. In this study, we reported a MYB-like group within the MYB-related subfamily contains 77 MYB genes. Expression analysis using low temperature-treated whole-genome microarray data revealed variable transcript abundance of 1R/2R/3R/4R/5R-MYB genes in 11 clusters between two inbred lines of Chinese cabbage, Chiifu and Kenshin, which differ in cold tolerance. In further validation tests, we used qRT-PCR to examine the cold-responsive expression patterns of 27 BrMYB genes; surprisingly, the MYB-related genes were induced more highly than the R2R3-MYB genes. In addition, we identified 10 genes with corresponsive expression patterns from a set of salt-, drought-, ABA-, JA-, and SA-induced R2R3-MYB genes. We identified 11 R2R3-MYBs functioning in resistance against biotic stress, including 10 against Fusarium oxysporum f.sp. conglutinans and one against Pectobacterium carotovoram subsp. caratovorum. Furthermore, based on organ-specific expression data, we identified nine R2R3-MYBs that were constitutively expressed in male reproductive tissue, which may provide an important key for studying male sterility in Chinese cabbage. The extensive annotation and transcriptome profiling reported in this study will be useful for understanding the involvement of MYB genes in stress resistance in addition to their growth regulatory functions, ultimately providing the basis for functional characterization and exploitation of the candidate MYB genes for genetic engineering of Chinese cabbage.


BMC Genomics | 2017

Genome-wide characterization and expression profiling of PDI family gene reveals function as abiotic and biotic stress tolerance in Chinese cabbage (Brassica rapa ssp. pekinensis)

Md. Abdul Kayum; Jong-In Park; Ujjal Kumar Nath; Gopal Saha; Manosh Kumar Biswas; Hoy-Taek Kim; Ill-Sup Nou

BackgroundProtein disulfide isomerase (PDI) and PDI-like proteins contain thioredoxin domains that catalyze protein disulfide bond, inhibit aggregation of misfolded proteins, and function in isomerization during protein folding in endoplasmic reticulum and responses during abiotic stresses.Chinese cabbage is widely recognized as an economically important, nutritious vegetable, but its yield is severely hampered by various biotic and abiotic stresses. Because of, it is prime need to identify those genes whose are responsible for biotic and abiotic stress tolerance. PDI family genes are among of them.ResultsWe have identified 32 PDI genes from the Br135K microarray dataset, NCBI and BRAD database, and in silico characterized their sequences. Expression profiling of those genes was performed using cDNA of plant samples imposed to abiotic stresses; cold, salt, drought and ABA (Abscisic Acid) and biotic stress; Fusarium oxysporum f. sp. conglutinans infection. The Chinese cabbage PDI genes were clustered in eleven groups in phylogeny. Among them, 15 PDI genes were ubiquitously expressed in various organs, while 24 PDI genes were up-regulated under salt and drought stress. By contrast, cold and ABA stress responsive gene number were ten and nine, respectively. In case of F. oxysporum f. sp. conglutinans infection 14 BrPDI genes were highly up-regulated. Interestingly, BrPDI1–1 gene was identified as putative candidate against abiotic (salt and drought) and biotic stresses, BrPDI5–2 gene for ABA stress, and BrPDI1–4, 6–1 and 9–2 were putative candidate genes for both cold and chilling injury stresses.ConclusionsOur findings help to elucidate the involvement of PDI genes in stress responses, and they lay the foundation for functional genomics in future studies and molecular breeding of Brassica rapa crops. The stress-responsive PDI genes could be potential resources for molecular breeding of Brassica crops resistant to biotic and abiotic stresses.


Plant Physiology and Biochemistry | 2015

Molecular characterization of BZR transcription factor family and abiotic stress induced expression profiling in Brassica rapa.

Gopal Saha; Jong-In Park; Hee-Jeong Jung; Nasar Uddin Ahmed; Md. Abdul Kayum; Jong-Goo Kang; Ill-Sup Nou


Acta Physiologiae Plantarum | 2016

Alfin-like transcription factor family: characterization and expression profiling against stresses in Brassica oleracea

Md. Abdul Kayum; Jong-In Park; Nasar Uddin Ahmed; Gopal Saha; Mi-Young Chung; Jong-Goo Kang; Ill-Sup Nou


한국원예학회 학술발표요지 | 2016

Development of Stable Red Colored Anthocyanins Rich Chinese Cabbage (Brassica rapa) through Introgression of Genes from Red Cabbage (Brassica oleracea)

Ujjal Kumar Nath; Gopal Saha; Md. Abdul Kayum; Mi-Young Chung; Jong-In Park; Ill-Sup Nou


Plant breeding and biotechnology | 2016

MADS-Box Genes Are Associated with the Petaloidy/Sepaloidy of Stamens in Cytoplasmic Male Sterile Brassica

Gopal Saha; Jong-In Park; Hoy-Taek Kim; Kwon Kyoo Kang; Yong Gu Cho; Ill Sup Nou

Collaboration


Dive into the Gopal Saha's collaboration.

Top Co-Authors

Avatar

Jong-In Park

Sunchon National University

View shared research outputs
Top Co-Authors

Avatar

Ill-Sup Nou

Sunchon National University

View shared research outputs
Top Co-Authors

Avatar

Md. Abdul Kayum

Sunchon National University

View shared research outputs
Top Co-Authors

Avatar

Nasar Uddin Ahmed

Sunchon National University

View shared research outputs
Top Co-Authors

Avatar

Hee-Jeong Jung

Sunchon National University

View shared research outputs
Top Co-Authors

Avatar

Mi-Young Chung

Sunchon National University

View shared research outputs
Top Co-Authors

Avatar

Jong-Goo Kang

Sunchon National University

View shared research outputs
Top Co-Authors

Avatar

Hoy-Taek Kim

Sunchon National University

View shared research outputs
Top Co-Authors

Avatar

Ujjal Kumar Nath

Sunchon National University

View shared research outputs
Top Co-Authors

Avatar

Yoonkang Hur

Chungnam National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge