Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gopalan Selvaraj is active.

Publication


Featured researches published by Gopalan Selvaraj.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The homeobox gene BREVIPEDICELLUS is a key regulator of inflorescence architecture in Arabidopsis

S. P. Venglat; Tim J. Dumonceaux; K. Rozwadowski; Laurence D. Parnell; V. Babic; W. Keller; Robert A. Martienssen; Gopalan Selvaraj; Raju Datla

Flowering plants display a remarkable range of inflorescence architecture, and pedicel characteristics are one of the key contributors to this diversity. However, very little is known about the genes or the pathways that regulate pedicel development. The brevipedicellus (bp) mutant of Arabidopsis thaliana displays a unique phenotype with defects in pedicel development causing downward-pointing flowers and a compact inflorescence architecture. Cloning and molecular analysis of two independent mutant alleles revealed that BP encodes the homeodomain protein KNAT1, a member of the KNOX family. bp-1 is a null allele with deletion of the entire locus, whereas bp-2 has a point mutation that is predicted to result in a truncated protein. In both bp alleles, the pedicels and internodes were compact because of fewer cell divisions; in addition, defects in epidermal and cortical cell differentiation and elongation were found in the affected regions. The downward-pointing pedicels were produced by an asymmetric effect of the bp mutation on the abaxial vs. adaxial sides. Cell differentiation, elongation, and growth were affected more severely on the abaxial than adaxial side, causing the change in the pedicel growth angle. In addition, bp plants displayed defects in cell differentiation and radial growth of the style. Our results show that BP plays a key regulatory role in defining important aspects of the growth and cell differentiation of the inflorescence stem, pedicel, and style in Arabidopsis.


The Plant Cell | 2003

Arabidopsis AtGPAT1, a Member of the Membrane-Bound Glycerol-3-Phosphate Acyltransferase Gene Family, Is Essential for Tapetum Differentiation and Male Fertility

Zhifu Zheng; Qun Xia; Melanie Dauk; Wenyun Shen; Gopalan Selvaraj; Jitao Zou

Membrane-bound glycerol-3-phosphate acyltransferase (GPAT; EC 2.3.1.15) mediates the initial step of glycerolipid biosynthesis in the extraplastidic compartments of plant cells. Here, we report the molecular characterization of a novel GPAT gene family from Arabidopsis, designated AtGPAT. The corresponding polypeptides possess transmembrane domains and GPAT activity when expressed heterologously in a yeast lipid mutant. The functional significance of one isoform, AtGPAT1, is the focus of the present study. Disruption of the AtGPAT1 gene causes a massive pollen development arrest, and subsequent introduction of the gene into the mutant plant rescues the phenotype, illustrating a pivotal role for AtGPAT1 in pollen development. Microscopic examinations revealed that the gene lesion results in a perturbed degeneration of the tapetum, which is associated with altered endoplasmic reticulum profiles and reduced secretion. In addition to the sporophytic effect, AtGPAT1 also exerts a gametophytic effect on pollen performance, as the competitive ability of a pollen grain to pollinate is dependent on the presence of an AtGPAT1 gene. Deficiency in AtGPAT1 correlates with several fatty acid composition changes in flower tissues and seeds. Unexpectedly, however, a loss of AtGPAT1 causes no significant change in seed oil content.


Plant Signaling & Behavior | 2009

Role of lignification in plant defense

Nazmul H. Bhuiyan; Gopalan Selvaraj; Yangdou Wei; John King

For a long time it has been believed that lignification has an important role in host defense against pathogen invasion. Recently, by using an RNAi gene-silencing assay we showed that monolignol biosynthesis plays a critical role in cell wall apposition (CWA)-mediated defense against powdery mildew fungus penetration into diploid wheat. Silencing monolignol genes led to super-susceptibility of wheat leaf tissues to an appropriate pathogen, Blumeria graminis f. sp. tritici (Bgt), and compromised penetration resistance to a non-appropriate pathogen, B. graminis f. sp. hordei. Autofluorescence of CWA regions was reduced significantly at the fungal penetration sites in silenced cells. Our work indicates an important role for monolignol biosynthetic genes in effective CWA formation against pathogen penetration. In this addendum, we show that silencing of monolignol genes also compromised penetration resistant to Bgt in a resistant wheat line. In addition, we discuss possible insights into how lignin biosynthesis contributes to host defense.


Journal of Experimental Botany | 2009

Gene expression profiling and silencing reveal that monolignol biosynthesis plays a critical role in penetration defence in wheat against powdery mildew invasion

Nazmul H. Bhuiyan; Gopalan Selvaraj; Yangdou Wei; John King

Cell wall apposition (CWA) formation is one of the first lines of defence used by plants to halt invading fungi such as powdery mildew. Lignin is a complex polymer of hydroxylated and methoxylated phenylpropane units (monolignols) and lignification renders the cell wall more resistant to pathogen attack. The role of monolignol biosynthesis in CWA-mediated defence against powdery mildew penetration into cereals is demonstrated here using RNA interference (RNAi)-mediated gene silencing and enzyme-specific inhibitors. Thirteen cDNAs representing eight genes involved in monolignol biosynthesis were cloned from an expression sequence tag (EST) library derived from the epidermis of diploid wheat (Triticum monococcum) infected with Blumeria graminis f. sp. tritici (Bgt). Differential expression patterns were found for these genes in susceptible and resistant plants after infection. Transcripts of phenylalanine ammonia lyase (PAL), caffeic acid O-methyltransferase (CAOMT), ferulic acid hydroxylase (FAH), caffeoyl-CoA O-methyltransferase (CCoAMT), and cinnamyl alcohol dehydrogenase (CAD) were accumulated, particularly in the epidermis. RNAi-mediated transient gene silencing in the epidermis led to a higher penetration efficiency of Bgt than in the controls. Gene silencing also compromised penetration resistance to varying degrees with different genes against an inappropriate pathogen, B. graminis f. sp. hordei (Bgh). Co-silencing led to greater penetration of Bgt or Bgh than when the genes were silenced separately. Fluorescence emission spectra analyses revealed that gene silencing hampered host autofluorescence response at fungal contact sites. These results illustrate that monolignol biosynthesis is critically important for host defence against both appropriate and inappropriate pathogen invasion in wheat.


The Plant Cell | 2010

Amino Acid Homeostasis Modulates Salicylic Acid–Associated Redox Status and Defense Responses in Arabidopsis

Guosheng Liu; Yuanyuan Ji; Nazmul H. Bhuiyan; Guillaume Pilot; Gopalan Selvaraj; Jitao Zou; Yangdou Wei

This study investigates the relationship between nitrogen metabolism and disease responses in Arabidopsis and shows that knockout of Arabidopsis LHT1, a single amino acid transporter, imparts broad-spectrum resistance to pathogens. The tight association between nitrogen status and pathogenesis has been broadly documented in plant–pathogen interactions. However, the interface between primary metabolism and disease responses remains largely unclear. Here, we show that knockout of a single amino acid transporter, LYSINE HISTIDINE TRANSPORTER1 (LHT1), is sufficient for Arabidopsis thaliana plants to confer a broad spectrum of disease resistance in a salicylic acid–dependent manner. We found that redox fine-tuning in photosynthetic cells was causally linked to the lht1 mutant-associated phenotypes. Furthermore, the enhanced resistance in lht1 could be attributed to a specific deficiency of its main physiological substrate, Gln, and not to a general nitrogen deficiency. Thus, by enabling nitrogen metabolism to moderate the cellular redox status, a plant primary metabolite, Gln, plays a crucial role in plant disease resistance.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The classical Ubisch bodies carry a sporophytically produced structural protein (RAFTIN) that is essential for pollen development

Aiming Wang; Qun Xia; Wenshuang Xie; Raju Datla; Gopalan Selvaraj

Pollen fecundity is crucial to crop productivity and also to biodiversity in general. Pollen development is supported by the tapetum, a metabolically active sporophytic nurse layer that devotes itself to this process. The tapetum in cereals and a vast majority of other plants is of the nonamoeboid type. Unable to reach out to microspores, it secretes nutrients into the anther locule where the microspores reside and develop. Orbicules (Ubisch bodies), studied in various plants since their discovery ≈140 years ago, are a hallmark of the secretory tapetum. Their significance to tapetal or pollen development has not been established. We have identified in wheat and rice an anther-specific single-copy gene (per haploid genome equivalent) whose suppression in rice by RNA interference nearly eliminated the seed set. The flowers in the transgenics were normal for female functions, but the pollen collapsed and became less viable. Further characterization of the gene product, named RAFTIN, in wheat has shown that it is present in pro-orbicule bodies and it is accumulated in Ubisch bodies. Furthermore, it is targeted to microspore exine. Although the carboxyl portion of RAFTINs shares short, dispersed amino acid sequences (BURP domain) in common with a variety of proteins of disparate biological contexts, the occurrence RAFTIN per se is limited to cereals; neither the Arabidopsis genome nor the vast collection of ESTs suggests any obvious dicot homologs. Furthermore, our results show that RAFTIN is essential for the late phase of pollen development in cereals.


The Plant Cell | 2012

Target of Rapamycin Signaling Regulates Metabolism, Growth, and Life Span in Arabidopsis

Maozhi Ren; Prakash Venglat; Shuqing Qiu; Li Feng; Yongguo Cao; Edwin Wang; Daoquan Xiang; Jinghe Wang; Danny Alexander; Subbaiah Chalivendra; David C. Logan; Autar K. Mattoo; Gopalan Selvaraj; Raju Datla

This work examines the postembryonic functions of Target of Rapamycin (TOR) in Arabidopsis by generating rapamycin-sensitive Arabidopsis plants via transgenic expression of a yeast protein. Examination of these lines indicates that in plants, as in animals, TOR acts in the integration of metabolism, nutrition, and life span. Target of Rapamycin (TOR) is a major nutrition and energy sensor that regulates growth and life span in yeast and animals. In plants, growth and life span are intertwined not only with nutrient acquisition from the soil and nutrition generation via photosynthesis but also with their unique modes of development and differentiation. How TOR functions in these processes has not yet been determined. To gain further insights, rapamycin-sensitive transgenic Arabidopsis thaliana lines (BP12) expressing yeast FK506 Binding Protein12 were developed. Inhibition of TOR in BP12 plants by rapamycin resulted in slower overall root, leaf, and shoot growth and development leading to poor nutrient uptake and light energy utilization. Experimental limitation of nutrient availability and light energy supply in wild-type Arabidopsis produced phenotypes observed with TOR knockdown plants, indicating a link between TOR signaling and nutrition/light energy status. Genetic and physiological studies together with RNA sequencing and metabolite analysis of TOR-suppressed lines revealed that TOR regulates development and life span in Arabidopsis by restructuring cell growth, carbon and nitrogen metabolism, gene expression, and rRNA and protein synthesis. Gain- and loss-of-function Ribosomal Protein S6 (RPS6) mutants additionally show that TOR function involves RPS6-mediated nutrition and light-dependent growth and life span in Arabidopsis.


Journal of Cell Science | 2007

Targeted alterations in iron homeostasis underlie plant defense responses.

Guosheng Liu; David L. Greenshields; Ramaswami Sammynaiken; Rozina Hirji; Gopalan Selvaraj; Yangdou Wei

Iron (Fe) is a ubiquitous redox-active element essential for most life. The formation of localized cell wall appositions, the oxidative burst and the production of pathogenesis-related proteins are hallmarks of plant defense responses. Here, we report that iron is a central mediator linking these three phenomena. We show that in response to pathogen attack, reactive Fe3+, but not Fe2+, is deposited at cell wall appositions where it accumulates and mediates the oxidative burst. We provide evidence that the bulk secretion of Fe3+ provoked by pathogen attack leads to intracellular iron depletion, and that H2O2 itself induces ATP-dependent intracellular iron efflux. Finally, we demonstrate that this intracellular iron depletion promotes the transcription of pathogenesis-related genes in concert with H2O2. This work identifies iron as an underlying factor associated with the oxidative burst and regulating cereal defenses, and establishes links between disease-related iron homeostasis in plants and animals.


Plant Physiology | 2011

Genome-wide analysis reveals gene expression and metabolic network dynamics during embryo development in Arabidopsis

Daoquan Xiang; Prakash Venglat; Chabane Tibiche; Hui Yang; Eddy Risseeuw; Yongguo Cao; Vivijan Babic; Mathieu Cloutier; Wilf Keller; Edwin Wang; Gopalan Selvaraj; Raju Datla

Embryogenesis is central to the life cycle of most plant species. Despite its importance, because of the difficulty associated with embryo isolation, global gene expression programs involved in plant embryogenesis, especially the early events following fertilization, are largely unknown. To address this gap, we have developed methods to isolate whole live Arabidopsis (Arabidopsis thaliana) embryos as young as zygote and performed genome-wide profiling of gene expression. These studies revealed insights into patterns of gene expression relating to: maternal and paternal contributions to zygote development, chromosomal level clustering of temporal expression in embryogenesis, and embryo-specific functions. Functional analysis of some of the modulated transcription factor encoding genes from our data sets confirmed that they are critical for embryogenesis. Furthermore, we constructed stage-specific metabolic networks mapped with differentially regulated genes by combining the microarray data with the available Kyoto Encyclopedia of Genes and Genomes metabolic data sets. Comparative analysis of these networks revealed the network-associated structural and topological features, pathway interactions, and gene expression with reference to the metabolic activities during embryogenesis. Together, these studies have generated comprehensive gene expression data sets for embryo development in Arabidopsis and may serve as an important foundational resource for other seed plants.


Plant Physiology | 2011

Target of Rapamycin Regulates Development and Ribosomal RNA Expression through Kinase Domain in Arabidopsis

Maozhi Ren; Shuqing Qiu; Prakash Venglat; Daoquan Xiang; Li Feng; Gopalan Selvaraj; Raju Datla

Target of rapamycin (TOR) is a central regulator of cell growth, cell death, nutrition, starvation, hormone, and stress responses in diverse eukaryotes. However, very little is known about TOR signaling and the associated functional domains in plants. We have taken a genetic approach to dissect TOR functions in Arabidopsis (Arabidopsis thaliana) and report here that the kinase domain is essential for the role of TOR in embryogenesis and 45S rRNA expression. Twelve new T-DNA insertion mutants, spanning 14.2 kb of TOR-encoding genomic region, have been characterized. Nine of these share expression of defective kinase domain and embryo arrest at 16 to 32 cell stage. However, three T-DNA insertion lines affecting FATC domain displayed normal embryo development, indicating that FATC domain was dispensable in Arabidopsis. Genetic complementation showed that the TOR kinase domain alone in tor-10/tor-10 mutant background can rescue early embryo lethality and restore normal development. Overexpression of full-length TOR or kinase domain in Arabidopsis displayed developmental abnormalities in meristem, leaf, root, stem, flowering time, and senescence. We further show that TOR, especially the kinase domain, plays a role in ribosome biogenesis by activating 45S rRNA production. Of the six putative nuclear localization sequences in the kinase domain, nuclear localization sequence 6 was identified to confer TOR nuclear targeting in transient expression assays. Chromatin immunoprecipitation studies revealed that the HEAT repeat domain binds to 45S rRNA promoter and the 5′ external transcribed spacer elements motif. Together, these results show that TOR controls the embryogenesis, postembryonic development, and 45S rRNA production through its kinase domain in Arabidopsis.

Collaboration


Dive into the Gopalan Selvaraj's collaboration.

Top Co-Authors

Avatar

Raju Datla

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Yangdou Wei

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Guosheng Liu

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Daoquan Xiang

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Prakash Venglat

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Vijai Bhadauria

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Albert Vandenberg

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jitao Zou

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Leonid Akhov

National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge