Vijai Bhadauria
University of Saskatchewan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vijai Bhadauria.
European Journal of Plant Pathology | 2010
Vijai Bhadauria; Sabine Banniza; Li-Xia Wang; Yangdou Wei; You-Liang Peng
Proteomics, the systematic analysis of the proteome, is a powerful tool in the post-genomic era. Proteomics studies have examined global changes in proteomes of phytopathogenic fungi, oomycetes and their hosts during compatible or incompatible interactions. This article compiles proteomics reports in order to decipher the molecular mechanisms underlying fungal development (infection-related morphogenesis), fungal or oomycete—host plant interactions, and phytopathogenesis.
BMC Genomics | 2011
Vijai Bhadauria; Sabine Banniza; Albert Vandenberg; Gopalan Selvaraj; Yangdou Wei
BackgroundColletotrichum truncatum is a haploid, hemibiotrophic, ascomycete fungal pathogen that causes anthracnose disease on many economically important leguminous crops. This pathogen exploits sequential biotrophic- and necrotrophic- infection strategies to colonize the host. Transition from biotrophy to a destructive necrotrophic phase called the biotrophy-necrotrophy switch is critical in symptom development. C. truncatum likely secretes an arsenal of proteins that are implicated in maintaining a compatible interaction with its host. Some of them might be transition specific.ResultsA directional cDNA library was constructed from mRNA isolated from infected Lens culinaris leaflet tissues displaying the biotrophy-necrotrophy switch of C. truncatum and 5000 expressed sequence tags (ESTs) with an average read of > 600 bp from the 5-prime end were generated. Nearly 39% of the ESTs were predicted to encode proteins of fungal origin and among these, 162 ESTs were predicted to contain N-terminal signal peptides (SPs) in their deduced open reading frames (ORFs). The 162 sequences could be assembled into 122 tentative unigenes comprising 32 contigs and 90 singletons. Sequence analyses of unigenes revealed four potential groups: hydrolases, cell envelope associated proteins (CEAPs), candidate effectors and other proteins. Eleven candidate effector genes were identified based on features common to characterized fungal effectors, i.e. they encode small, soluble (lack of transmembrane domain), cysteine-rich proteins with a putative SP. For a selected subset of CEAPs and candidate effectors, semiquantitative RT-PCR showed that these transcripts were either expressed constitutively in both in vitro and in planta or induced during plant infection. Using potato virus X (PVX) based transient expression assays, we showed that one of the candidate effectors, i. e. contig 8 that encodes a cerato-platanin (CP) domain containing protein, unlike CP proteins from other fungal pathogens was unable to elicit a hypersensitive response (HR).ConclusionsThe current study catalogues proteins putatively secreted at the in planta biotrophy-necrotrophy transition of C. truncatum. Some of these proteins may have a role in establishing compatible interaction with the host plant.
Eukaryotic Cell | 2013
Vijai Bhadauria; Sabine Banniza; Albert Vandenberg; Gopalan Selvaraj; Yangdou Wei
ABSTRACT The hemibiotrophic fungus Colletotrichum truncatum causes anthracnose disease on lentils and a few other grain legumes. It shows initial symptomless intracellular growth, where colonized host cells remain viable (biotrophy), and then switches to necrotrophic growth, killing the colonized host plant tissues. Here, we report a novel effector gene, CtNUDIX, from C. truncatum that is exclusively expressed during the late biotrophic phase (before the switch to necrotrophy) and elicits a hypersensitive response (HR)-like cell death in tobacco leaves transiently expressing the effector. CtNUDIX homologs, which contain a signal peptide and a Nudix hydrolase domain, may be unique to hemibiotrophic fungal and fungus-like plant pathogens. CtNUDIX lacking a signal peptide or a Nudix motif failed to induce cell death in tobacco. Expression of CtNUDIX:eGFP in tobacco suggested that the fusion protein might act on the host cell plasma membrane. Overexpression of CtNUDIX in C. truncatum and the rice blast pathogen, Magnaporthe oryzae, resulted in incompatibility with the hosts lentil and barley, respectively, by causing an HR-like response in infected host cells associated with the biotrophic invasive hyphae. These results suggest that C. truncatum and possibly M. oryzae elicit cell death to signal the transition from biotrophy to necrotrophy.
Comparative and Functional Genomics | 2009
Vijai Bhadauria; Sabine Banniza; Yangdou Wei; You-Liang Peng
Sequencing of over 40 fungal and oomycete genomes has been completed. The next major challenge in modern fungal/oomycete biology is now to translate this plethora of genome sequence information into biological functions. Reverse genetics has emerged as a seminal tool for functional genomics investigations. Techniques utilized for reverse genetics like targeted gene disruption/replacement, gene silencing, insertional mutagenesis, and targeting induced local lesions in genomes will contribute greatly to the understanding of gene function of fungal and oomycete pathogens. This paper provides an overview on high-throughput reverse genetics approaches to decode fungal/oomycete genomes.
PLOS ONE | 2012
Vijai Bhadauria; Sabine Banniza; Albert Vandenberg; Gopalan Selvaraj; Yangdou Wei
The role of β-oxidation and the glyoxylate cycle in fungal pathogenesis is well documented. However, an ambiguity still remains over their interaction in peroxisomes to facilitate fungal pathogenicity and virulence. In this report, we characterize a gene encoding an alanine, glyoxylate aminotransferase 1 (AGT1) in Magnaporthe oryzae, the causative agent of rice blast disease, and demonstrate that AGT1 is required for pathogenicity of M. oryzae. Targeted deletion of AGT1 resulted in the failure of penetration via appressoria; therefore, mutants lacking the gene were unable to induce blast symptoms on the hosts rice and barley. This penetration failure may be associated with a disruption in lipid mobilization during conidial germination as turgor generation in the appressorium requires mobilization of lipid reserves from the conidium. Analysis of enhanced green fluorescent protein expression using the transcriptional and translational fusion with the AGT1 promoter and open reading frame, respectively, revealed that AGT1 expressed constitutively in all in vitro grown cell types and during in planta colonization, and localized in peroxisomes. Peroxisomal localization was further confirmed by colocalization with red fluorescent protein fused with the peroxisomal targeting signal 1. Surprisingly, conidia produced by the Δagt1 mutant were unable to form appressoria on artificial inductive surfaces, even after prolonged incubation. When supplemented with nicotinamide adenine dinucleotide (NAD+)+pyruvate, appressorium formation was restored on an artificial inductive surface. Taken together, our data indicate that AGT1-dependent pyruvate formation by transferring an amino group of alanine to glyoxylate, an intermediate of the glyoxylate cycle is required for lipid mobilization and utilization. This pyruvate can be converted to non-fermentable carbon sources, which may require reoxidation of NADH generated by the β-oxidation of fatty acids to NAD+ in peroxisomes. Therefore, it may provide a means to maintain redox homeostasis in appressoria.
Plant Signaling & Behavior | 2011
Vijai Bhadauria; Sabine Banniza; Albert Vandenberg; Gopalan Selvaraj; Yangdou Wei
Hemibiotrophic phytopathogenic fungi cause devastating diseases in agronomically important crops. These fungal pathogens exploit a stealth bi-phasic infection strategy to colonize host plants. Their morphological and nutritional transition from biotrophy (characterized by voluminous intracellular primary hyphae) to necrotrophy (characterized by thin secondary hyphae) known as the biotrophy-necrotrophy switch (hemibiotrophy) is critical in symptom and disease development. To establish successful hemibiotrophic parasitism, pathogens likely secrete suites of proteins at the switch that constitute the biotrophy-necrotrophy switch secretome. To catalogue such proteins, a directional cDNA library was constructed from mRNA isolated from infected Lens culinaris leaflet tissues displaying the switch of Colletotrichum truncatum, and 5000 expressed sequence tags (ESTs) were generated. Four potential groups (hydrolytic enzymes, cell envelope-associated proteins [CEAPs], candidate effectors and proteins with diverse functions) were identified from pathogen-derived ESTs. Expression profiling of transcripts encoding CEAPs and candidate effectors in an infection time-course revealed that the majority of these transcripts were expressed or induced during the necrotrophic phase and repressed during the biotrophic phase of in planta colonization, indicating the massive accumulation of proteins at the switch. Taken together, our data suggest that the hemibiotrophic mode of fungal proliferation entails complex interactions of a pathogen with its host wherein the pathogen requires live host cells prior to switching to the necrotrophic phase. The microbial proteins employed during pathogenesis are likely to have defined roles at specific stages of pathogenesis.
Biology Direct | 2010
Vijai Bhadauria; Li-Xia Wang; You-Liang Peng
BackgroundThe rice blast disease caused by Magnaporthe oryzae is a major constraint on world rice production. The conidia produced by this fungal pathogen are the main source of disease dissemination. The morphology of conidia may be a critical factor in the spore dispersal and virulence of M. oryzae in the field. Deletion of a conidial morphology regulating gene encoding putative transcriptional regulator COM1 in M. oryzae resulted in aberrant conidial shape, reduced conidiation and attenuated virulence.ResultsIn this study, a two-dimensional gel electrophoresis/matrix assisted laser desorption ionization- time of flight mass spectrometry (2-DE/MALDI-TOF MS) based proteomics approach was employed to identify the cellular and molecular components regulated by the COM1 protein (COM1p) that might contribute to the aberrant phenotypes in M. oryzae. By comparing the conidial proteomes of COM1 deletion mutant and its isogenic wild-type strain P131, we identified a potpourri of 31 proteins that exhibited statistically significant alterations in their abundance levels. Of these differentially regulated proteins, the abundance levels of nine proteins were elevated and twelve were reduced in the Δcom1 mutant. Three proteins were detected only in the Δcom1 conidial proteome, whereas seven proteins were apparently undetectable. The data obtained in the study suggest that the COM1p plays a key role in transcriptional reprogramming of genes implicated in melanin biosynthesis, carbon and energy metabolism, structural organization of cell, lipid metabolism, amino acid metabolism, etc. Semi-quantitative RT-PCR analysis revealed the down-regulation of genes encoding enzymes involved in melanin biosynthesis in the COM1 mutant.ConclusionsOur results suggest that the COM1p may regulate the transcription of genes involved in various cellular processes indispensable for conidial development and appressorial penetration. These functions are likely to contribute to the effects of COM1p upon the aberrant phenotypes of M. oryzae.ReviewersThis article is reviewed by George V. Shpakovski, Karthikeyan Sivaraman (nominated by M. Madan Babu) and Lakshminarayan M. Iyer.
Biotechnic & Histochemistry | 2009
Vijai Bhadauria; P Miraz; R Kennedy; Sabine Banniza; Yangdou Wei
Understanding the infection biology of fungi is the key step in devising suitable control strategies for plant diseases. Recently, the Arabidopsis-Colletotrichum higginsianum (causal agent of anthracnose) system has emerged as a seminal paradigm for deciphering the infection biology underlying fungus-plant interactions. We describe here three staining methods coupled with confocal microscopy: trypan blue, aniline blue and dual trypan blue-aniline blue fluorescence staining. Trypan blue and aniline blue staining were employed to scan the infection structures of the hemibiotrophic fungus C. higginsianum and host response in A. thaliana leaf tissues. The two techniques then were combined to observe the contrast between in planta fungal infection structures, i.e., infection vesicles, primary hyphae and secondary hyphae, and the host plant defense responses, i.e., papilla formation and hypersensitive response. These staining techniques also were applied to the lentil-C. truncatum pathosystem to demonstrate their applicability for multiple pathosystems.
BMC Genomics | 2015
Vijai Bhadauria; Ron MacLachlan; Curtis J. Pozniak; Sabine Banniza
BackgroundThe hemibiotroph Colletotrichum lentis, causative agent of anthracnose on Lens culinaris (lentil) was recently described as a new species. During its interaction with the host plant, C. lentis likely secretes numerous effector proteins, including toxins to alter the plant’s innate immunity, thereby gaining access to the host tissues for nutrition and reproduction.ResultsIn silico analysis of 2000 ESTs generated from C. lentis-infected lentil leaf tissues identified 15 candidate effectors. In planta infection stage-specific gene expression waves among candidate effectors were revealed for the appressorial penetration phase, biotrophic phase and necrotrophic phase. No sign of positive selection pressure [ω (dN/dS) < 1] in effectors was detected at the intraspecific level. A single nucleotide polymorphism in the ORF of candidate effector ClCE6, used to develop a KASPar marker, differentiated perfectly between pathogenic race 0 and race 1 isolates when tested on 52 isolates arbitrarily selected from a large culture collection representing the western Canadian population of C. lentis. Furthermore, an EST encoding argininosuccinate lyase (Arg) was identified as a bacterial gene. A toxin protein ClToxB was further characterized as a potential host-specific toxin through heterologous in planta expression. The knock-down of ClToxB transcripts by RNAi resulted in reduced virulence, suggesting that ClToxB is a virulence factor. In silico analysis of the ClToxB sequence and comparative genomics revealed that ToxB is unlikely a foreign gene in the C. lentis genome. Incongruency between established species relationships and that established based on gene sequence data confirmed ToxB arose through evolution from a common ancestor, whereas the bacterial gene Arg identified in C. lentis was horizontally transferred from bacteria.ConclusionsEST mining and expression profiling revealed a set of in planta expressed candidate effectors. We developed a KASPar assay using effector polymorphism to differentiate C. lentis races. Comparative genomics revealed a foreign gene encoding a potential virulence factor Arg, which was horizontally transferred from bacteria into the genus Colletotrichum. ClToxB is further characterized as a host-specific toxin that is likely to contribute to quantitative differences in virulence between the races 0 and 1.
BMC Genetics | 2013
Vijai Bhadauria; Kirstin E. Bett; Tengsheng Zhou; Albert Vandenberg; Yangdou Wei; Sabine Banniza
BackgroundAnthracnose of lentil, caused by the hemibiotrophic fungal pathogen Colletotrichum truncatum is a serious threat to lentil production in western Canada. Colletotrichum truncatum employs a bi-phasic infection strategy characterized by initial symptomless biotrophic and subsequent destructive necrotrophic colonization of its host. The transition from biotrophy to necrotrophy (known as the biotrophy-necrotrophy switch [BNS]) is critical in anthracnose development. Understanding plant responses during the BNS is the key to designing a strategy for incorporating resistance against hemibiotrophic pathogens either via introgression of resistance genes or quantitative trait loci contributing to host defense into elite cultivars, or via incorporation of resistance by biotechnological means.ResultsThe in planta BNS of C. truncatum was determined by histochemical analysis of infected lentil leaf tissues in time-course experiments. A total of 2852 lentil expressed sequence tags (ESTs) derived from C. truncatum-infected leaf tissues were analyzed to catalogue defense related genes. These ESTs could be assembled into 1682 unigenes. Of these, 101 unigenes encoded membrane and transport associated proteins, 159 encoded proteins implicated in signal transduction and 387 were predicted to be stress and defense related proteins (GenBank accessions: JG293480 to JG293479). The most abundant class of defense related proteins contained pathogenesis related proteins (encoded by 125 ESTs) followed by heat shock proteins, glutathione S-transferase, protein kinases, protein phosphatase, zinc finger proteins, peroxidase, GTP binding proteins, resistance proteins and syringolide-induced proteins. Quantitative RT-PCR was conducted to compare the expression of two resistance genes of the NBS-LRR class in susceptible and partially resistant genotypes. One (contig186) was induced 6 days post-inoculation (dpi) in a susceptible host genotype (Eston) whereas the mRNA level of another ( LT21-1990) peaked 4 dpi in a partially resistant host genotype (Robin), suggesting roles in conditioning the susceptibility and conferring tolerance to the pathogen, respectively.ConclusionsData obtained in this study suggest that lentil cells recognize C. truncatum at the BNS and in response, mount an inducible defense as evident by a high number of transcripts (23% of the total pathogen-responsive lentil transcriptome) encoding defense related proteins. Temporal expression polymorphism of defense related genes could be used to distinguish the response of a lentil genotype as susceptible or resistant.