Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Göran Sandberg is active.

Publication


Featured researches published by Göran Sandberg.


The Plant Cell | 2001

Auxin Transport Promotes Arabidopsis Lateral Root Initiation

Ilda Casimiro; Alan Marchant; Rishikesh P. Bhalerao; Tom Beeckman; Sandra Dhooge; Ranjan Swarup; Neil S. Graham; Dirk Inzé; Göran Sandberg; Pedro Casero; Malcolm J. Bennett

Lateral root development in Arabidopsis provides a model for the study of hormonal signals that regulate postembryonic organogenesis in higher plants. Lateral roots originate from pairs of pericycle cells, in several cell files positioned opposite the xylem pole, that initiate a series of asymmetric, transverse divisions. The auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) arrests lateral root development by blocking the first transverse division(s). We investigated the basis of NPA action by using a cell-specific reporter to demonstrate that xylem pole pericycle cells retain their identity in the presence of the auxin transport inhibitor. However, NPA causes indoleacetic acid (IAA) to accumulate in the root apex while reducing levels in basal tissues critical for lateral root initiation. This pattern of IAA redistribution is consistent with NPA blocking basipetal IAA movement from the root tip. Characterization of lateral root development in the shoot meristemless1 mutant demonstrates that root basipetal and leaf acropetal auxin transport activities are required during the initiation and emergence phases, respectively, of lateral root development.


Cell | 2008

Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants

Yi Tao; Jean-Luc Ferrer; Karin Ljung; Florence Pojer; Fangxin Hong; Jeff A. Long; Lin Li; Javier Moreno; Marianne E. Bowman; Lauren J. Ivans; Youfa Cheng; Jason Lim; Yunde Zhao; Carlos L. Ballaré; Göran Sandberg; Joseph P. Noel; Joanne Chory

Plants grown at high densities perceive a decrease in the red to far-red (R:FR) ratio of incoming light, resulting from absorption of red light by canopy leaves and reflection of far-red light from neighboring plants. These changes in light quality trigger a series of responses known collectively as the shade avoidance syndrome. During shade avoidance, stems elongate at the expense of leaf and storage organ expansion, branching is inhibited, and flowering is accelerated. We identified several loci in Arabidopsis, mutations in which lead to plants defective in multiple shade avoidance responses. Here we describe TAA1, an aminotransferase, and show that TAA1 catalyzes the formation of indole-3-pyruvic acid (IPA) from L-tryptophan (L-Trp), the first step in a previously proposed, but uncharacterized, auxin biosynthetic pathway. This pathway is rapidly deployed to synthesize auxin at the high levels required to initiate the multiple changes in body plan associated with shade avoidance.


Cell | 2002

AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis.

Jiří Friml; Eva Benková; Ikram Blilou; Justyna Wišniewska; Thorsten Hamann; Karin Ljung; Scott T. Woody; Göran Sandberg; Ben Scheres; Gerd Jürgens; Klaus Palme

In contrast to animals, little is known about pattern formation in plants. Physiological and genetic data suggest the involvement of the phytohormone auxin in this process. Here, we characterize a novel member of the PIN family of putative auxin efflux carriers, Arabidopsis PIN4, that is localized in developing and mature root meristems. Atpin4 mutants are defective in establishment and maintenance of endogenous auxin gradients, fail to canalize externally applied auxin, and display various patterning defects in both embryonic and seedling roots. We propose a role for AtPIN4 in generating a sink for auxin below the quiescent center of the root meristem that is essential for auxin distribution and patterning.


Trends in Plant Science | 2003

Dissecting Arabidopsis lateral root development

Ilda Casimiro; Tom Beeckman; Neil S. Graham; Rishikesh P. Bhalerao; Hanma Zhang; Pedro Casero; Göran Sandberg; Malcolm J. Bennett

Recent studies in the model plant Arabidopsis provide new insight into the regulation of root architecture, a key determinant of nutrient- and water-use efficiency in crops. Lateral root (LR) primordia originate from a subset of pericycle founder cells. Sophisticated mass-spectroscopy-based techniques have been used to map the sites of biosynthesis of auxin and its distribution in Arabidopsis seedlings, highlighting the importance of the phytohormone during LR initiation and emergence. Key components of the cell cycle and signal-transduction pathway(s) that promote and attenuate auxin-dependent LR initiation have recently been identified. Additional signals, such as abscisic acid and nitrate, also regulate LR emergence, raising intriguing questions about the cross-talk between their transduction pathways.


Proceedings of the National Academy of Sciences of the United States of America | 2001

A transcriptional roadmap to wood formation

Magnus Hertzberg; Henrik Aspeborg; Jarmo Schrader; Anders F. Andersson; Kristina Blomqvist; Rupali Bhalerao; Mathias Uhlén; Tuula T. Teeri; Joakim Lundeberg; Björn Sundberg; Peter Nilsson; Göran Sandberg

The large vascular meristem of poplar trees with its highly organized secondary xylem enables the boundaries between different developmental zones to be easily distinguished. This property of wood-forming tissues allowed us to determine a unique tissue-specific transcript profile for a well defined developmental gradient. RNA was prepared from different developmental stages of xylogenesis for DNA microarray analysis by using a hybrid aspen unigene set consisting of 2,995 expressed sequence tags. The analysis revealed that the genes encoding lignin and cellulose biosynthetic enzymes, as well as a number of transcription factors and other potential regulators of xylogenesis, are under strict developmental stage-specific transcriptional regulation.


Nature Cell Biology | 2008

The auxin influx carrier LAX3 promotes lateral root emergence

Kamal Swarup; Eva Benková; Ranjan Swarup; Ilda Casimiro; Benjamin Péret; Yaodong Yang; Geraint Parry; Erik Nielsen; Ive De Smet; Steffen Vanneste; Mitch P. Levesque; David John Carrier; Nicholas James; Vanessa Calvo; Karin Ljung; Eric M. Kramer; Rebecca Roberts; Neil S. Graham; Sylvestre Marillonnet; Kanu Patel; Jonathan D. G. Jones; Christopher G. Taylor; Daniel P. Schachtman; Sean T. May; Göran Sandberg; Philip N. Benfey; Jiri Friml; Ian D. Kerr; Tom Beeckman; Laurent Laplaze

Lateral roots originate deep within the parental root from a small number of founder cells at the periphery of vascular tissues and must emerge through intervening layers of tissues. We describe how the hormone auxin, which originates from the developing lateral root, acts as a local inductive signal which re-programmes adjacent cells. Auxin induces the expression of a previously uncharacterized auxin influx carrier LAX3 in cortical and epidermal cells directly overlaying new primordia. Increased LAX3 activity reinforces the auxin-dependent induction of a selection of cell-wall-remodelling enzymes, which are likely to promote cell separation in advance of developing lateral root primordia.


The Plant Cell | 2005

Sites and Regulation of Auxin Biosynthesis in Arabidopsis Roots

Karin Ljung; Anna K. Hull; John L. Celenza; Masashi Yamada; Mark Estelle; Jennifer Normanly; Göran Sandberg

Auxin has been shown to be important for many aspects of root development, including initiation and emergence of lateral roots, patterning of the root apical meristem, gravitropism, and root elongation. Auxin biosynthesis occurs in both aerial portions of the plant and in roots; thus, the auxin required for root development could come from either source, or both. To monitor putative internal sites of auxin synthesis in the root, a method for measuring indole-3-acetic acid (IAA) biosynthesis with tissue resolution was developed. We monitored IAA synthesis in 0.5- to 2-mm sections of Arabidopsis thaliana roots and were able to identify an important auxin source in the meristematic region of the primary root tip as well as in the tips of emerged lateral roots. Lower but significant synthesis capacity was observed in tissues upward from the tip, showing that the root contains multiple auxin sources. Root-localized IAA synthesis was diminished in a cyp79B2 cyp79B3 double knockout, suggesting an important role for Trp-dependent IAA synthesis pathways in the root. We present a model for how the primary root is supplied with auxin during early seedling development.


The Plant Cell | 2007

Ethylene Upregulates Auxin Biosynthesis in Arabidopsis Seedlings to Enhance Inhibition of Root Cell Elongation

Ranjan Swarup; Paula Perry; Dik Hagenbeek; Dominique Van Der Straeten; Gerrit T.S. Beemster; Göran Sandberg; Rishikesh P. Bhalerao; Karin Ljung; Malcolm J. Bennett

Ethylene represents an important regulatory signal for root development. Genetic studies in Arabidopsis thaliana have demonstrated that ethylene inhibition of root growth involves another hormone signal, auxin. This study investigated why auxin was required by ethylene to regulate root growth. We initially observed that ethylene positively controls auxin biosynthesis in the root apex. We subsequently demonstrated that ethylene-regulated root growth is dependent on (1) the transport of auxin from the root apex via the lateral root cap and (2) auxin responses occurring in multiple elongation zone tissues. Detailed growth studies revealed that the ability of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid to inhibit root cell elongation was significantly enhanced in the presence of auxin. We conclude that by upregulating auxin biosynthesis, ethylene facilitates its ability to inhibit root cell expansion.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Gravity-regulated differential auxin transport from columella to lateral root cap cells

Iris Ottenschläger; Patricia Wolff; C. Wolverton; Rishikesh P. Bhalerao; Göran Sandberg; Hideo Ishikawa; Michael J. Evans; Klaus Palme

Gravity-induced root curvature has long been considered to be regulated by differential distribution of the plant hormone auxin. However, the cells establishing these gradients, and the transport mechanisms involved, remain to be identified. Here, we describe a GFP-based auxin biosensor to monitor auxin during Arabidopsis root gravitropism at cellular resolution. We identify elevated auxin levels at the root apex in columella cells, the site of gravity perception, and an asymmetric auxin flux from these cells to the lateral root cap (LRC) and toward the elongation zone after gravistimulation. We differentiate between an efflux-dependent lateral auxin transport from columella to LRC cells, and an efflux- and influx-dependent basipetal transport from the LRC to the elongation zone. We further demonstrate that endogenous gravitropic auxin gradients develop even in the presence of an exogenous source of auxin. Live-cell auxin imaging provides unprecedented insights into gravity-regulated auxin flux at cellular resolution, and strongly suggests that this flux is a prerequisite for root gravitropism.


Current Biology | 2005

Arabidopsis KNOXI proteins activate cytokinin biosynthesis

Osnat Yanai; Eilon Shani; Karel Dolezal; Petr Tarkowski; Robert Sablowski; Göran Sandberg; Alon Samach; Naomi Ori

Plant architecture is shaped through the continuous formation of organs by meristems. Class I KNOTTED1-like homeobox (KNOXI) genes are expressed in the shoot apical meristem (SAM) and are required for SAM maintenance. KNOXI proteins and cytokinin, a plant hormone intimately associated with the regulation of cell division, share overlapping roles, such as meristem maintenance and repression of senescence, but their mechanistic and hierarchical relationship have yet to be defined. Here, we show that activation of three different KNOXI proteins using an inducible system resulted in a rapid increase in mRNA levels of the cytokinin biosynthesis gene isopentenyl transferase 7 (AtIPT7) and in the activation of ARR5, a cytokinin response factor. We further demonstrate a rapid and dramatic increase in cytokinin levels following activation of the KNOXI protein SHOOT MERISTEMLESS (STM). Application of exogenous cytokinin or expression of a cytokinin biosynthesis gene through the STM promoter partially rescued the stm mutant. We conclude that activation of cytokinin biosynthesis mediates KNOXI function in meristem maintenance. KNOXI proteins emerge as central regulators of hormone levels in plant meristems.

Collaboration


Dive into the Göran Sandberg's collaboration.

Top Co-Authors

Avatar

Karin Ljung

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Crozier

University of California

View shared research outputs
Top Co-Authors

Avatar

Thomas Moritz

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anders Östin

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Folke Sitbon

Swedish University of Agricultural Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge