Magnus Hertzberg
Umeå University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Magnus Hertzberg.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Magnus Hertzberg; Henrik Aspeborg; Jarmo Schrader; Anders F. Andersson; Kristina Blomqvist; Rupali Bhalerao; Mathias Uhlén; Tuula T. Teeri; Joakim Lundeberg; Björn Sundberg; Peter Nilsson; Göran Sandberg
The large vascular meristem of poplar trees with its highly organized secondary xylem enables the boundaries between different developmental zones to be easily distinguished. This property of wood-forming tissues allowed us to determine a unique tissue-specific transcript profile for a well defined developmental gradient. RNA was prepared from different developmental stages of xylogenesis for DNA microarray analysis by using a hybrid aspen unigene set consisting of 2,995 expressed sequence tags. The analysis revealed that the genes encoding lignin and cellulose biosynthetic enzymes, as well as a number of transcription factors and other potential regulators of xylogenesis, are under strict developmental stage-specific transcriptional regulation.
The Plant Cell | 2004
Jarmo Schrader; Jeanette Nilsson; Ewa J. Mellerowicz; Anders Berglund; Peter Nilsson; Magnus Hertzberg; Göran Sandberg
Plant growth is the result of cell proliferation in meristems, which requires a careful balance between the formation of new tissue and the maintenance of a set of undifferentiated stem cells. Recent studies have provided important information on several genetic networks responsible for stem cell maintenance and regulation of cell differentiation in the apical meristems of shoots and roots. Nothing, however, is known about the regulatory networks in secondary meristems like the vascular cambium of trees. We have made use of the large size and highly regular layered organization of the cambial meristem to create a high-resolution transcriptional map covering 220 μm of the cambial region of aspen (Populus tremula). Clusters of differentially expressed genes revealed substantial differences in the transcriptomes of the six anatomically homogenous cell layers in the meristem zone. Based on transcriptional and anatomical data, we present a model for the position of the stem cells and the proliferating mother cells in the cambial zone. We also provide sets of marker genes for different stages of xylem and phloem differentiation and identify potential regulators of cambial meristem activity. Interestingly, analysis of known regulators of apical meristem development indicates substantial similarity in regulatory networks between primary and secondary meristems.
Nature Biotechnology | 2004
Oskar Erikson; Magnus Hertzberg; Torgny Näsholm
Selectable markers enable transgenic plants or cells to be identified after transformation. They can be divided into positive and negative markers conferring a selective advantage or disadvantage, respectively. We present a marker gene, dao1, encoding D-amino acid oxidase (DAAO, EC 1.4.3.3) that can be used for either positive or negative selection, depending on the substrate. DAAO catalyzes the oxidative deamination of a range of D-amino acids. Selection is based on differences in the toxicity of different D-amino acids and their metabolites to plants. Thus, D-alanine and D-serine are toxic to plants, but are metabolized by DAAO into nontoxic products, whereas D-isoleucine and D-valine have low toxicity, but are metabolized by DAAO into the toxic keto acids 3-methyl-2-oxopentanoate and 3-methyl-2-oxobutanoate, respectively. Hence, both positive and negative selection is possible with the same marker gene. The marker has been successfully established in Arabidopsis thaliana, and proven to be versatile, rapidly yielding unambiguous results, and allowing selection immediately after germination.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Jonathan Love; Simon Björklund; Jorma Vahala; Magnus Hertzberg; Jaakko Kangasjärvi; Björn Sundberg
The plant hormone ethylene is an important signal in plant growth responses to environmental cues. In vegetative growth, ethylene is generally considered as a regulator of cell expansion, but a role in the control of meristem growth has also been suggested based on pharmacological experiments and ethylene-overproducing mutants. In this study, we used transgenic ethylene-insensitive and ethylene-overproducing hybrid aspen (Populus tremula × tremuloides) in combination with experiments using an ethylene perception inhibitor [1-methylcyclopropene (1-MCP)] to demonstrate that endogenous ethylene produced in response to leaning stimulates cell division in the cambial meristem. This ethylene-controlled growth gives rise to the eccentricity of Populus stems that is formed in association with tension wood.
Plant Molecular Biology | 2003
Maria Israelsson; Maria Eriksson; Magnus Hertzberg; Henrik Aspeborg; Peter Nilsson; Thomas Moritz
Transgenic lines of hybrid aspen with elevated levels of gibberellin (GA) show greatly increased numbers of xylem fibres and increases in xylem fibre length. These plants therefore provide excellent models for studying secondary growth. We have used cDNA microarry analysis to investigate how gene transcription in the developing xylem is affected by GA-induced growth. A recent investigation has shown that genes encoding lignin and cellulose biosynthetic enzymes, as well as a number of transcription factors and other potential regulators of xylogenesis, are under developmental-stage-specific transcriptional control. The present study shows that the highest transcript changes in our transgenic trees occurs in genes generally restricted to the early stages of xylogenesis, including cell division, early expansion and late expansion. The results reveal genes among those arrayed that are up-regulated with an increased xylem production, thus indicating key components in the production of wood.
Plant Molecular Biology | 2005
Oskar Erikson; Magnus Hertzberg; Torgny Näsholm
Plants are sensitive to D-serine, but functional expression of the dsdA gene, encoding D-serine ammonia lyase, from Escherichia coli can alleviate this toxicity. Plants, in contrast to many other organisms, lack the common pathway for oxidative deamination of D-amino acids. This difference in metabolism has major consequences for plant responses to D-amino acids, since several D-amino acids are toxic to plants even at relatively low concentrations. Therefore, introducing an enzyme specific for a phytotoxic D-amino acid should generate a selectable characteristic that can be screened. Here we present the use of the dsdA gene as a selectable marker for transformation of Arabidopsis. D-serine ammonia lyase catalyses the deamination of D-serine into pyruvate, water and ammonium. dsdA transgenic seedlings can be clearly distinguished from wild type, having an unambiguous phenotype immediately following germination when selected on D-serine containing medium. The dsdA marker allows flexibility in application of the selective agent: it can be applied in sterile plates, in foliar sprays or in liquid culture. Selection with D-serine resistance was compared with selection based on kanamycin resistance, and was found to generate similar transformation frequencies but also to be more unambiguous, more rapid and more versatile with respect to the way the selective agent can be supplied.
Plant Biotechnology Journal | 2013
Hely Häggman; Alan Raybould; Aluízio Borém; Thomas R. Fox; Levis Handley; Magnus Hertzberg; Meng-Zu Lu; Philip Macdonald; Taichi Oguchi; Giancarlo Pasquali; Les Pearson; Gary F. Peter; Hector Quemada; Armand Séguin; Kylie Tattersall; Eugênio César Ulian; Christian Walter; Morven A. McLean
Forests are vital to the worlds ecological, social, cultural and economic well-being yet sustainable provision of goods and services from forests is increasingly challenged by pressures such as growing demand for wood and other forest products, land conversion and degradation, and climate change. Intensively managed, highly productive forestry incorporating the most advanced methods for tree breeding, including the application of genetic engineering (GE), has tremendous potential for producing more wood on less land. However, the deployment of GE trees in plantation forests is a controversial topic and concerns have been particularly expressed about potential harms to the environment. This paper, prepared by an international group of experts in silviculture, forest tree breeding, forest biotechnology and environmental risk assessment (ERA) that met in April 2012, examines how the ERA paradigm used for GE crop plants may be applied to GE trees for use in plantation forests. It emphasizes the importance of differentiating between ERA for confined field trials of GE trees, and ERA for unconfined or commercial-scale releases. In the case of the latter, particular attention is paid to characteristics of forest trees that distinguish them from shorter-lived plant species, the temporal and spatial scale of forests, and the biodiversity of the plantation forest as a receiving environment.
The Plant Cell | 2014
Claudiu Niculaes; Kris Morreel; Hoon Kim; Fachuang Lu; Lauren S. McKee; Bart Ivens; Jurgen Haustraete; Bartel Vanholme; Riet De Rycke; Magnus Hertzberg; Jörg Fromm; Vincent Bulone; Andrea Polle; John Ralph; Wout Boerjan
This work reveals the biological function of phenylcoumaran benzylic ether reductase, one of the most abundant proteins in poplar wood. Its role is to reduce monolignol coupling products and to prevent accumulation of compounds formed under oxidative conditions. Phenylcoumaran benzylic ether reductase (PCBER) is one of the most abundant proteins in poplar (Populus spp) xylem, but its biological role has remained obscure. In this work, metabolite profiling of transgenic poplar trees downregulated in PCBER revealed both the in vivo substrate and product of PCBER. Based on mass spectrometry and NMR data, the substrate was identified as a hexosylated 8–5-coupling product between sinapyl alcohol and guaiacylglycerol, and the product was identified as its benzyl-reduced form. This activity was confirmed in vitro using a purified recombinant PCBER expressed in Escherichia coli. Assays performed on 20 synthetic substrate analogs revealed the enzyme specificity. In addition, the xylem of PCBER-downregulated trees accumulated over 2000-fold higher levels of cysteine adducts of monolignol dimers. These compounds could be generated in vitro by simple oxidative coupling assays involving monolignols and cysteine. Altogether, our data suggest that the function of PCBER is to reduce phenylpropanoid dimers in planta to form antioxidants that protect the plant against oxidative damage. In addition to describing the catalytic activity of one of the most abundant enzymes in wood, we provide experimental evidence for the antioxidant role of a phenylpropanoid coupling product in planta.
PLOS ONE | 2011
Jiehua Wang; Sara Andersson-Gunnerås; Ioana Gaboreanu; Magnus Hertzberg; Matthew R. Tucker; Bo Zheng; Joanna Leśniewska; Ewa J. Mellerowicz; Thomas Laux; Göran Sandberg; Brian Jones
SHORT-ROOT (SHR) is a well characterized regulator of cell division and cell fate determination in the Arabidopsis primary root. However, much less is known about the functions of SHR in the aerial parts of the plant. In this work, we cloned SHR gene from Populus trichocarpa (PtSHR1) as an AtSHR ortholog and down-regulated its expression in hybrid poplar (Populus tremula×P. tremuloides Michx-clone T89) in order to determine its physiological functions in shoot development. Sharing a 90% similarity to AtSHR at amino acid level, PtSHR1 was able to complement the Arabidopsis shr mutant. Down regulation of PtSHR1 led to a strong enhancement of primary (height) and secondary (girth) growth rates in the transgenic poplars. A similar approach in Arabidopsis showed a comparable accelerated growth and development phenotype. Our results suggest that the response to SHR could be dose-dependent and that a partial down-regulation of SHR could lead to enhanced meristem activity and a coordinated acceleration of plant growth in woody species. Therefore, SHR functions in plant growth and development as a regulator of cell division and meristem activity not only in the roots but also in the shoots. Reducing SHR expression in transgenic poplar was shown to lead to significant increases in primary and secondary growth rates. Given the current interest in bioenergy crops, SHR has a broader role as a key regulator of whole plant growth and development and SHR suppression has considerable potential for accelerating biomass accumulation in a variety of species.
Planta | 2001
Helga Schinkel; Magnus Hertzberg; Gunnar Wingsle
Abstract. Several CuZn-superoxide dismutases (SODs; EC 1.15.1.1) were cloned from hybrid aspen (Populus tremula L. × tremuloides Michx.). Two of the cloned genes encode representatives of a novel type of CuZn-SOD and we named it HipI-SOD because of its high isoelectric point (≥9). The SODs were cloned by screening a cDNA library with a probe based on a Scots pine (Pinus sylvestris L.) CuZn-SOD that is predominantly located extracellularly. The expression pattern of HipI-SOD was examined using a Northern blot technique and compared with the expression patterns of cytosolic and chloroplastic SODs. Distinct expression patterns were observed for the three types of CuZn-SOD, with HipI-SODs showing strong expression in apical tissues. Southern blots as well as protein analysis suggest that these novel HipI-SODs belong to a small gene family, one member of which might be monomeric.