Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gordana Tovilovic is active.

Publication


Featured researches published by Gordana Tovilovic.


European Journal of Pharmacology | 2011

Metformin reduces cisplatin-mediated apoptotic death of cancer cells through AMPK-independent activation of Akt.

Kristina Janjetovic; Ljubica Vucicevic; Maja Misirkic; Urosh Vilimanovich; Gordana Tovilovic; Nevena Zogovic; Zoran Nikolić; Svetlana P. Jovanović; Vladimir Bumbasirevic; Vladimir Trajkovic; Ljubica Harhaji-Trajkovic

Metformin is an antidiabetic drug with anticancer properties, which mainly acts through induction of AMP-activated protein kinase (AMPK). In the present study we investigated the influence of metformin on the in vitro anticancer activity of the well-known chemotherapeutic agent cisplatin. Cell viability was determined by MTT and LDH release assay, oxidative stress and apoptosis (caspase activation, DNA fragmentation, and phosphatidylserine exposure) were assessed by flow cytometry, while activation of AMPK and Akt was analyzed by immunoblotting. Although metformin reduced the number of tumour cells when applied alone, it surprisingly antagonized the cytotoxicity of cisplatin towards U251 human glioma, C6 rat glioma, SHSY5Y human neuroblastoma, L929 mouse fibrosarcoma and HL-60 human leukemia cell lines. Only in B16 mouse melanoma cells metformin augmented the cytotoxicity of cisplatin. In U251 glioma cells metformin suppressed cisplatin-induced apoptotic cell death through inhibition of oxidative stress and caspase activation. The observed cytoprotection was apparently AMPK-independent, as metformin did not further increase cisplatin-induced AMPK activation in U251 cells and other pharmacological AMPK activators failed to block cisplatin-mediated apoptosis. On the other hand, metformin induced Akt activation in cisplatin-treated cells and Akt inhibitor 10-DEBC hydrochloride or phosphoinositide 3-kinase/Akt inhibitor LY294002 abolished metformin-mediated antioxidant and antiapoptotic effects. In conclusion, the antidiabetic drug metformin reduces cisplatin in vitro anticancer activity through AMPK-independent upregulation of Akt survival pathway. These data warrant caution when considering metformin for treatment of diabetic cancer patients receiving cisplatin or as a potential adjuvant in cisplatin-based chemotherapeutic regimens.


Pharmaceutical Research | 2012

Chloroquine-mediated lysosomal dysfunction enhances the anticancer effect of nutrient deprivation.

Ljubica Harhaji-Trajkovic; Katarina Arsikin; Tamara Kravic-Stevovic; Sasa Petricevic; Gordana Tovilovic; Aleksandar Pantovic; Nevena Zogovic; Biljana Ristic; Kristina Janjetovic; Vladimir Bumbasirevic; Vladimir Trajkovic

ABSTRACTPurposeTo investigate the ability of chloroquine, a lysosomotropic autophagy inhibitor, to enhance the anticancer effect of nutrient deprivation.MethodsSerum-deprived U251 glioma, B16 melanoma and L929 fibrosarcoma cells were treated with chloroquine in vitro. Cell viability was measured by crystal violet and MTT assay. Oxidative stress, apoptosis/necrosis and intracellular acidification were analyzed by flow cytometry. Cell morphology was examined by light and electron microscopy. Activation of AMP-activated protein kinase (AMPK) and autophagy were monitored by immunoblotting. RNA interference was used for AMPK and LC3b knockdown. The anticancer efficiency of intraperitoneal chloroquine in calorie-restricted mice was assessed using a B16 mouse melanoma model.ResultsChloroquine rapidly killed serum-starved cancer cells in vitro. This effect was not mimicked by autophagy inhibitors or LC3b shRNA, indicating autophagy-independent mechanism. Chloroquine-induced lysosomal accumulation and oxidative stress, leading to mitochondrial depolarization, caspase activation and mixed apoptotic/necrotic cell death, were prevented by lysosomal acidification inhibitor bafilomycin. AMPK downregulation participated in chloroquine action, as AMPK activation reduced, and AMPK shRNA mimicked chloroquine toxicity. Chloroquine inhibited melanoma growth in calorie-restricted mice, causing lysosomal accumulation, mitochondrial disintegration and selective necrosis of tumor cells.ConclusionCombined treatment with chloroquine and calorie restriction might be useful in cancer therapy.


Biochimica et Biophysica Acta | 2012

Autophagy-dependent and -independent involvement of AMP-activated protein kinase in 6-hydroxydopamine toxicity to SH-SY5Y neuroblastoma cells.

Katarina Arsikin; Tamara Kravic-Stevovic; Maja Jovanovic; Biljana Ristic; Gordana Tovilovic; Nevena Zogovic; Vladimir Bumbasirevic; Vladimir Trajkovic; Ljubica Harhaji-Trajkovic

The role of the main intracellular energy sensor adenosine monophosphate (AMP)-activated protein kinase (AMPK) in the induction of autophagic response and cell death was investigated in SH-SY5Y human neuroblastoma cells exposed to the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA). The induction of autophagy in SH-SY5Y cells was demonstrated by acridine orange staining of intracellular acidic vesicles, the presence of autophagosome- and autophagolysosome-like vesicles confirmed by transmission electron microscopy, as well as by microtubule-associated protein 1 light-chain 3 (LC3) conversion and p62 degradation detected by immunoblotting. 6-OHDA induced phosphorylation of AMPK and its target Raptor, followed by the dephosphorylation of the major autophagy inhibitor mammalian target of rapamycin (mTOR) and its substrate p70S6 kinase (S6K). 6-OHDA treatment failed to suppress mTOR/S6K phosphorylation and to increase LC3 conversion, p62 degradation and cytoplasmatic acidification in neuroblastoma cells in which AMPK expression was downregulated by RNA interference. Transfection of SH-SY5Y cells with AMPK or LC3β shRNA, as well as treatment with pharmacological autophagy inhibitors suppressed, while mTOR inhibitor rapamycin potentiated 6-OHDA-induced oxidative stress and apoptotic cell death. 6-OHDA induced phosphorylation of p38 mitogen-activated protein (MAP) kinase in an AMPK-dependent manner, and pharmacological inhibition of p38 MAP kinase reduced neurotoxicity, but not AMPK activation and autophagy triggered by 6-OHDA. Finally, the antioxidant N-acetyl cysteine antagonized 6-OHDA-induced activation of AMPK, p38 and autophagy. These data suggest that oxidative stress-mediated AMPK/mTOR-dependent autophagy and AMPK/p38-dependent apoptosis could be valid therapeutic targets for neuroprotection.


Pharmacological Research | 2012

Inhibition of AMPK-dependent autophagy enhances in vitro antiglioma effect of simvastatin

Maja Misirkic; Kristina Janjetovic; Ljubica Vucicevic; Gordana Tovilovic; Biljana Ristic; Urosh Vilimanovich; Ljubica Harhaji-Trajkovic; Mirjana Sumarac-Dumanovic; Dragan Micic; Vladimir Bumbasirevic; Vladimir Trajkovic

The role of autophagy, a process in which the cell self-digests its own components, was investigated in glioma cell death induced by the hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase-inhibiting drug simvastatin. Induction of autophagy and activation of autophagy-regulating signalling pathways were analyzed by immunoblotting. Flow cytometry/fluorescent microscopy was used to assess autophagy-associated intracellular acidification and apoptotic markers (phosphatidylserine exposure, DNA fragmentation and caspase activation). Cell viability was determined by crystal violet, MTT or LDH release assay. Simvastatin treatment of U251 and C6 glioma cell lines caused the appearance of autophagolysosome-like intracytoplasmic acidic vesicles. The induction of autophagy in U251 cells was confirmed by the upregulation of autophagosome-associated LC3-II and pro-autophagic beclin-1, as well as by the downregulation of the selective autophagic target p62. Simvastatin induced the activation of AMP-activated protein kinase (AMPK) and its target Raptor, while simultaneously downregulating activation of Akt. Mammalian target of rapamycin (mTOR), a major AMPK/Akt downstream target and a major negative autophagy regulator, and its substrate p70 S6 kinase 1 were also inhibited by simvastatin. Mevalonate, the product of HMG-CoA reductase enzymatic activity, AMPK siRNA or pharmacological inactivation of AMPK with compound C suppressed, while the inhibitors of Akt (10-DEBC hydrochloride) and mTOR (rapamycin) mimicked autophagy induction by simvastatin. Inhibition of autophagy with bafilomycin A1, 3-methyladenine and LC3β shRNA, as well as AMPK inhibition with compound C or AMPK siRNA, markedly increased apoptotic death of simvastatin-treated U251 cells. These data suggest that inhibition of AMPK-dependent autophagic response might sensitize glioma cells to statin-induced apoptotic death.


Pharmacology, Biochemistry and Behavior | 2005

Neuropharmacological evaluation of diethylether extract and xanthones of Gentiana kochiana

Mirko Tomić; Gordana Tovilovic; Biljana Butorović; Dijana Krstić; Teodora Janković; Ivana Aljančić; Nebojša Menković

Diethylether extract of aerial parts of Gentiana kochiana mostly consists of two tetraoxygenated xanthones: gentiacaulein (1,7-dihidroxy-3,8-dimethoxyxanthone; 76.1%) and gentiakochianin (1,7,8-trihidroxy-3-methoxyxanthone; 14.2%). The extract and these xanthones were evaluated for the CNS pharmacological activity in rodents. In vitro assays on rat brain preparations revealed insignificant interaction of the compounds with the specific dopamine and serotonin receptors or synaptosomal uptake of serotonin. However, the extract and gentiacaulein strongly inhibited rat microsomal MAO A (IC50=0.22 microg/ml and 0.49 microM, respectively). Their effects on MAO B and a gentiakochianin blocking potential on both MAO enzymes were moderate. Behavioral examinations on mice showed that 10 day s.c. administration of the extract (20 mg/kg) significantly decreased immobility score in a forced swimming test and strongly inhibited ambulation and stereotypy in an open-field test. These effects resembled those induced by 10 mg/kg imipramine. The ex vivo MAO A activity in crude brain mitochondrial fraction of mice treated with 20 mg/kg of the extract was significantly elevated, whilst that outside brain nerve terminals was declined. This study suggests some antidepressant therapeutic potential of G. kochiana, particularly of gentiacaulein, with an ambiguity whether pharmacological mechanism could be related only to the central inhibition of MAO A.


Microbes and Infection | 2013

mTOR-independent autophagy counteracts apoptosis in herpes simplex virus type 1-infected U251 glioma cells.

Gordana Tovilovic; Biljana Ristic; Marina Siljic; Valentina Nikolic; Tamara Kravic-Stevovic; Marija Dulović; Marina Milenković; Aleksandra Knezevic; Mihajlo Bosnjak; Vladimir Bumbasirevic; Maja Stanojevic; Vladimir Trajkovic

We investigated the role of autophagy, a stress-inducible lysosomal self-digestion of cellular components, in modulation of herpes simplex virus type 1 (HSV-1)-triggered death of U251 human glioma cells. HSV-1 caused apoptotic death in U251 cells, characterized by phosphatidylserine externalization, caspase activation and DNA fragmentation. HSV-1-induced apoptosis was associated with the induction of autophagic response, as confirmed by the conversion of cytosolic LC3-I to autophagosome-associated LC3-II, increase in intracellular acidification, presence of autophagic vesicles, and increase in proteolysis of the selective autophagic target p62. HSV-1-triggered autophagy was not associated with the significant increase in the expression of proautophagic protein beclin-1 or downregulation of the major autophagy suppressor mammalian target of rapamycin (mTOR). Moreover, the phosphorylation of mTOR and its direct substrate p70 S6 kinase was augmented by HSV-1 infection, while the mTOR stimulator Akt and inhibitor AMPK-activated protein kinase (AMPK) were accordingly activated and suppressed, respectively. An shRNA-mediated knockdown of the autophagy-essential LC3β, as well as pharmacological inhibition of autophagy with bafilomycin A1 or 3-methyladenine, markedly accelerated apoptotic changes and ensuing cell death in HSV-1-infected glioma cells. These data indicate that AMPK/Akt/mTOR-independent autophagy could prolong survival of HSV-1-infected U251 glioma cells by counteracting the coinciding apoptotic response.


Journal of Biomedical Materials Research Part A | 2014

Structure and properties of thermoplastic polyurethanes based on poly(dimethylsiloxane): Assessment of biocompatibility

Marija V. Pergal; Jelena Nestorov; Gordana Tovilovic; Sanja Ostojić; Dejan Gođevac; Dana Vasiljević-Radović; Jasna Djonlagic

Properties and biocompatibility of a series of thermoplastic poly(urethane-siloxane)s (TPUSs) based on α,ω-dihydroxy ethoxy propyl poly(dimethylsiloxane) (PDMS) for potential biomedical application were studied. Thin films of TPUSs with a different PDMS soft segment content were characterized by (1) H NMR, quantitative (13) C NMR, Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), contact angle, and water absorption measurements. Different techniques (FTIR, AFM, and DMA) showed that decrease of PDMS content promotes microphase separation in TPUSs. Samples with a higher PDMS content have more hydrophobic surface and better waterproof performances, but lower degree of crystallinity. Biocompatibility of TPUSs was examined after attachment of endothelial cells to the untreated copolymer surface or surface pretreated with multicomponent protein mixture, and by using competitive protein adsorption assay. TPUSs did not exhibit any cytotoxicity toward endothelial cells, as measured by lactate dehydrogenase and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide assays. The untreated and proteins preadsorbed TPUS samples favored endothelial cells adhesion and growth, indicating good biocompatibility. All TPUSs adsorbed more albumin than fibrinogen in competitive protein adsorption experiment, which is feature regarded as beneficial for biocompatibility. The results indicate that TPUSs have good surface, thermo-mechanical, and biocompatible properties, which can be tailored for biomedical application requirements by adequate selection of the soft/hard segments ratio of the copolymers.


Journal of Biomaterials Science-polymer Edition | 2012

In Vitro Biocompatibility Evaluation of Novel Urethane–Siloxane Co-Polymers Based on Poly(ϵ-Caprolactone)-block-Poly(Dimethylsiloxane)-block-Poly(ϵ-Caprolactone)

Marija V. Pergal; Vesna V. Antić; Gordana Tovilovic; Jelena Nestorov; Dana Vasiljević-Radović; Jasna Djonlagic

Abstract Novel polyurethane co-polymers (TPUs), based on poly(ϵ-caprolactone)-block-poly(dimethylsiloxane)-block-poly(ϵ-caprolactone) (PCL-PDMS-PCL) as soft segment and 4,4’-methylenediphenyl diisocyanate (MDI) and 1,4-butanediol (BD) as hard segment, were synthesized and evaluated for biomedical applications. The content of hard segments (HS) in the polymer chains was varied from 9 to 63 wt%. The influence of the content and length of the HS on the thermal, surface, mechanical properties and biocompatibility was investigated. The structure, composition and HS length were examined using 1H- and quantitative 13C-NMR spectroscopy. DSC results implied that the synthesized TPUs were semicrystalline polymers in which both the hard MDI/BD and soft PCL-PDMS-PCL segments participated. It was found that an increase in the average HS length (from 1.2 to 14.4 MDI/BD units) was accompanied by an increase in the crystallinity of the hard segments, storage moduli, hydrophilicity and degree of microphase separation of the co-polymers. Depending on the HS content, a gradual variation in surface properties of co-polymers was revealed by FT-IR, AFM and static water contact angle measurements. The in vitro biocompatibility of co-polymers was evaluated using the endothelial EA.hy926 cell line and protein adsorption on the polyurethane films. All synthesized TPUs adsorbed more albumin than fibrinogen from multicomponent protein mixture, which may indicate biocompatibility. The polyurethane films with high HS content and/or high roughness coefficient exhibit good surface properties and biocompatible behavior, which was confirmed by non-toxic effects to cells and good cell adhesion. Therefore, the non-cytotoxic chemistry of the co-polymers makes them good candidates for further development as biomedical implants.


Neuropharmacology | 2013

Arylpiperazine-mediated activation of Akt protects SH-SY5Y neuroblastoma cells from 6-hydroxydopamine-induced apoptotic and autophagic death.

Gordana Tovilovic; Nevena Zogovic; Vukic Soskic; André Schrattenholz; Sladjana Kostic-Rajacic; Maja Misirkic-Marjanovic; Kristina Janjetovic; Ljubica Vucicevic; Katarina Arsikin; Ljubica Harhaji-Trajkovic; Vladimir Trajkovic

We investigated the ability of 19 recently synthesized arylpiperazine compounds to protect human SH-SY5Y neuroblastoma cells from the neurotoxin 6-hydroxydopamine (6-OHDA). The compound with the most potent neuroprotective action was N-{3-[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-picolinamide (6b), which reduced 6-OHDA-induced apoptotic death through stabilization of mitochondrial membrane and subsequent prevention of superoxide production, caspase activation and DNA fragmentation. 6-OHDA-triggered autophagic response was also reduced by 6b, which prevented inactivation of the main autophagy repressor mTOR, upregulation of proautophagic beclin-1, conversion of microtubule-associated protein 1 light chain 3 (LC3)-I to autophagosome-associated LC3-II, as well as intracytoplasmic acidification induced by 6-OHDA. The inhibition of autophagy using LC3β gene silencing or pharmacological autophagy blockers 3-methyladenine or bafilomycin A1, mimicked the cytoprotective effect of 6b. While the treatment with 6b had no effect on the phosphorylation of proapoptotic MAP kinases ERK and JNK, it markedly increased the phosphorylation of the prosurvival kinase Akt in 6-OHDA-treated cells. Akt inhibitor DEBC or RNA interference-mediated Akt silencing reduced the ability of 6b to block 6-OHDA-triggered apoptotic and autophagic responses, thus confirming their dependency on Akt activation. The cytoprotective effect of 6b was also observed in 6-OHDA-treated neuronal PC12 cells, but not in SH-SY5Y or PC12 cells exposed to 1-methyl-4-phenylpyridinium, indicating that the observed neuroprotection was dependent on the cytotoxic stimulus. Because of the ability to prevent 6-OHDA induced apoptotic/autophagic cell death through activation of Akt, the investigated arylpiperazines could be potential candidates for treatment of neurodegenerative diseases.


Immunobiology | 2013

Increased activity of interleukin-23/interleukin-17 cytokine axis in primary antiphospholipid syndrome

Dragana Popovic-Kuzmanovic; Ivana Novakovic; Ljudmila Stojanovich; Ivona Aksentijevich; Nevena Zogovic; Gordana Tovilovic; Vladimir Trajkovic

The aim of the study was to investigate serum concentrations of interleukin (IL)-17 and IL-17-inducing cytokines IL-23 and transforming growth factor (TGF)-β, as well as IL-17 single nucleotide polymorphism (SNP) rs2275913 in patients with primary antiphospholipid syndrome (PAPS). We studied fifty patients with PAPS and fifty age- and sex-matched healthy controls. The cytokine levels were measured by ELISA, while the rs2275913 SNP located in promoter region of IL-17 gene was genotyped using real-time PCR. The significantly higher levels of IL-17 (p=0.002), IL-23 (p<0.001) and TGF-β (p=0.042) were found in PAPS patients (median 13.1, 9.4, and 125.6 pg/ml, respectively) compared to the control group (6.8, 4.9 and 44.4 pg/ml). There was a significant positive correlation between concentrations of IL-17 and IL-23 (r=0.540, p<0.001), but not between those of IL-17 and TGF-β. No statistically significant differences were observed in the distribution of genotypes and alleles of the IL-17 rs2275913 variants in patients with PAPS compared to healthy subjects. The blood concentrations of IL-17 did not differ in subjects with different rs2275913 genotypes or patients with or without antiphospholipid antibodies. Finally, a trend toward higher IL-17 levels (p=0.063) and the significantly higher IL-17 concentrations (p=0.012) were observed in PAPS patients with deep vein thrombosis and thrombocytopenia, respectively. These data demonstrate that IL-23/IL-17 axis, stimulated independently of TGF-β increase IL-17A gene polymorphism and antiphospholipid antibody production, might contribute to vascular manifestations of PAPS.

Collaboration


Dive into the Gordana Tovilovic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge