Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nevena Zogovic is active.

Publication


Featured researches published by Nevena Zogovic.


European Journal of Pharmacology | 2011

Metformin reduces cisplatin-mediated apoptotic death of cancer cells through AMPK-independent activation of Akt.

Kristina Janjetovic; Ljubica Vucicevic; Maja Misirkic; Urosh Vilimanovich; Gordana Tovilovic; Nevena Zogovic; Zoran Nikolić; Svetlana P. Jovanović; Vladimir Bumbasirevic; Vladimir Trajkovic; Ljubica Harhaji-Trajkovic

Metformin is an antidiabetic drug with anticancer properties, which mainly acts through induction of AMP-activated protein kinase (AMPK). In the present study we investigated the influence of metformin on the in vitro anticancer activity of the well-known chemotherapeutic agent cisplatin. Cell viability was determined by MTT and LDH release assay, oxidative stress and apoptosis (caspase activation, DNA fragmentation, and phosphatidylserine exposure) were assessed by flow cytometry, while activation of AMPK and Akt was analyzed by immunoblotting. Although metformin reduced the number of tumour cells when applied alone, it surprisingly antagonized the cytotoxicity of cisplatin towards U251 human glioma, C6 rat glioma, SHSY5Y human neuroblastoma, L929 mouse fibrosarcoma and HL-60 human leukemia cell lines. Only in B16 mouse melanoma cells metformin augmented the cytotoxicity of cisplatin. In U251 glioma cells metformin suppressed cisplatin-induced apoptotic cell death through inhibition of oxidative stress and caspase activation. The observed cytoprotection was apparently AMPK-independent, as metformin did not further increase cisplatin-induced AMPK activation in U251 cells and other pharmacological AMPK activators failed to block cisplatin-mediated apoptosis. On the other hand, metformin induced Akt activation in cisplatin-treated cells and Akt inhibitor 10-DEBC hydrochloride or phosphoinositide 3-kinase/Akt inhibitor LY294002 abolished metformin-mediated antioxidant and antiapoptotic effects. In conclusion, the antidiabetic drug metformin reduces cisplatin in vitro anticancer activity through AMPK-independent upregulation of Akt survival pathway. These data warrant caution when considering metformin for treatment of diabetic cancer patients receiving cisplatin or as a potential adjuvant in cisplatin-based chemotherapeutic regimens.


European Journal of Pharmacology | 2011

In vitro and in vivo anti-melanoma action of metformin

Kristina Janjetovic; Ljubica Harhaji-Trajkovic; Maja Misirkic-Marjanovic; Ljubica Vucicevic; Darko Stevanovic; Nevena Zogovic; Mirjana Sumarac-Dumanovic; Dragan Micic; Vladimir Trajkovic

The in vitro and in vivo anti-melanoma effect of antidiabetic drug metformin was investigated using B16 mouse melanoma cell line. Metformin caused a G(2)/M cell cycle arrest associated with apoptotic death of melanoma cells, as confirmed by the flow cytometric analysis of cell cycle/DNA fragmentation, phosphatidylserine exposure and caspase activation. Metformin-mediated apoptosis of melanoma cells was preceded by induction of oxidative stress and mitochondrial membrane depolarization, measured by flow cytometry in cells stained with appropriate fluorescent reporter dyes. The expression of tumor suppressor protein p53 was increased, while the mRNA levels of anti-apoptotic Bcl-2 were reduced by metformin, as revealed by cell-based ELISA and real-time RT-PCR, respectively. Treatment with metformin did not stimulate expression of the cycle blocker p21, indicating that p21 was dispensable for the observed cell cycle arrest. The activation of AMP-activated protein kinase (AMPK) was not required for the anti-melanoma action of metformin, as AMPK inhibitor compound C completely failed to restore viability of metformin-treated B16 cells. Metformin induced autophagy in B16 cells, as demonstrated by flow cytometry-detected increase in intracellular acidification and immunoblot-confirmed upregulation of autophagosome-associated LC3-II. Autophagy inhibitors ammonium chloride and wortmannin partly restored the viability of metformin-treated melanoma cells. Finally, oral administration of metformin led to a significant reduction in tumor size in a B16 mouse melanoma model. These data suggest that anti-melanoma effects of metformin are mediated through p21- and AMPK-independent cell cycle arrest, apoptosis and autophagy associated with p53/Bcl-2 modulation, mitochondrial damage and oxidative stress.


Biomaterials | 2009

Opposite effects of nanocrystalline fullerene (C60) on tumour cell growth in vitro and in vivo and a possible role of immunosupression in the cancer-promoting activity of C60

Nevena Zogovic; Nadezda Nikolic; Sanja Vranjes-Djuric; Ljubica Harhaji; Ljubica Vucicevic; Kristina Janjetovic; Maja Misirkic; Biljana Todorovic-Markovic; Zoran Marković; Slobodan K. Milonjic; Vladimir Trajkovic

In the present study, we compared the effects of nanocrystalline fullerene suspension (nanoC(60)) on tumour cell growth in vitro and in vivo. NanoC(60) suspension was prepared by solvent exchange using tetrahydrofuran to dissolve C(60). In vitro, nanoC(60) caused oxidative stress, mitochondrial depolarization and caspase activation, leading to apoptotic and necrotic death in mouse B16 melanoma cells. Biodistribution studies demonstrated that intraperitoneally injected radiolabeled (125I) nanoC(60) readily accumulated in the tumour tissue of mice subcutaneously inoculated with B16 cells. However, intraperitoneal administration of nanoC(60) over the course of two weeks starting from melanoma cell implantation not only failed to reduce, but significantly augmented tumour growth. The tumour-promoting effect of nanoC(60) was accompanied by a significant increase in splenocyte production of the immunoregulatory free radical nitric oxide (NO), as well as by a reduction in splenocyte proliferative responses to T- and B-cell mitogens ConcanavalinA and bacterial lipopolysaccharide, respectively. A negative correlation between NO production and splenocyte proliferation indicated a possible role of NO in reducing the proliferation of splenocytes from nanoC(60)-injected mice. These data demonstrate that nanoC(60), in contrast to its potent anticancer activity in vitro, can potentiate tumour growth in vivo, possibly by causing NO-dependent suppression of anticancer immune response.


Pharmaceutical Research | 2012

Chloroquine-mediated lysosomal dysfunction enhances the anticancer effect of nutrient deprivation.

Ljubica Harhaji-Trajkovic; Katarina Arsikin; Tamara Kravic-Stevovic; Sasa Petricevic; Gordana Tovilovic; Aleksandar Pantovic; Nevena Zogovic; Biljana Ristic; Kristina Janjetovic; Vladimir Bumbasirevic; Vladimir Trajkovic

ABSTRACTPurposeTo investigate the ability of chloroquine, a lysosomotropic autophagy inhibitor, to enhance the anticancer effect of nutrient deprivation.MethodsSerum-deprived U251 glioma, B16 melanoma and L929 fibrosarcoma cells were treated with chloroquine in vitro. Cell viability was measured by crystal violet and MTT assay. Oxidative stress, apoptosis/necrosis and intracellular acidification were analyzed by flow cytometry. Cell morphology was examined by light and electron microscopy. Activation of AMP-activated protein kinase (AMPK) and autophagy were monitored by immunoblotting. RNA interference was used for AMPK and LC3b knockdown. The anticancer efficiency of intraperitoneal chloroquine in calorie-restricted mice was assessed using a B16 mouse melanoma model.ResultsChloroquine rapidly killed serum-starved cancer cells in vitro. This effect was not mimicked by autophagy inhibitors or LC3b shRNA, indicating autophagy-independent mechanism. Chloroquine-induced lysosomal accumulation and oxidative stress, leading to mitochondrial depolarization, caspase activation and mixed apoptotic/necrotic cell death, were prevented by lysosomal acidification inhibitor bafilomycin. AMPK downregulation participated in chloroquine action, as AMPK activation reduced, and AMPK shRNA mimicked chloroquine toxicity. Chloroquine inhibited melanoma growth in calorie-restricted mice, causing lysosomal accumulation, mitochondrial disintegration and selective necrosis of tumor cells.ConclusionCombined treatment with chloroquine and calorie restriction might be useful in cancer therapy.


Biochimica et Biophysica Acta | 2012

Autophagy-dependent and -independent involvement of AMP-activated protein kinase in 6-hydroxydopamine toxicity to SH-SY5Y neuroblastoma cells.

Katarina Arsikin; Tamara Kravic-Stevovic; Maja Jovanovic; Biljana Ristic; Gordana Tovilovic; Nevena Zogovic; Vladimir Bumbasirevic; Vladimir Trajkovic; Ljubica Harhaji-Trajkovic

The role of the main intracellular energy sensor adenosine monophosphate (AMP)-activated protein kinase (AMPK) in the induction of autophagic response and cell death was investigated in SH-SY5Y human neuroblastoma cells exposed to the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA). The induction of autophagy in SH-SY5Y cells was demonstrated by acridine orange staining of intracellular acidic vesicles, the presence of autophagosome- and autophagolysosome-like vesicles confirmed by transmission electron microscopy, as well as by microtubule-associated protein 1 light-chain 3 (LC3) conversion and p62 degradation detected by immunoblotting. 6-OHDA induced phosphorylation of AMPK and its target Raptor, followed by the dephosphorylation of the major autophagy inhibitor mammalian target of rapamycin (mTOR) and its substrate p70S6 kinase (S6K). 6-OHDA treatment failed to suppress mTOR/S6K phosphorylation and to increase LC3 conversion, p62 degradation and cytoplasmatic acidification in neuroblastoma cells in which AMPK expression was downregulated by RNA interference. Transfection of SH-SY5Y cells with AMPK or LC3β shRNA, as well as treatment with pharmacological autophagy inhibitors suppressed, while mTOR inhibitor rapamycin potentiated 6-OHDA-induced oxidative stress and apoptotic cell death. 6-OHDA induced phosphorylation of p38 mitogen-activated protein (MAP) kinase in an AMPK-dependent manner, and pharmacological inhibition of p38 MAP kinase reduced neurotoxicity, but not AMPK activation and autophagy triggered by 6-OHDA. Finally, the antioxidant N-acetyl cysteine antagonized 6-OHDA-induced activation of AMPK, p38 and autophagy. These data suggest that oxidative stress-mediated AMPK/mTOR-dependent autophagy and AMPK/p38-dependent apoptosis could be valid therapeutic targets for neuroprotection.


Neuropharmacology | 2013

Arylpiperazine-mediated activation of Akt protects SH-SY5Y neuroblastoma cells from 6-hydroxydopamine-induced apoptotic and autophagic death.

Gordana Tovilovic; Nevena Zogovic; Vukic Soskic; André Schrattenholz; Sladjana Kostic-Rajacic; Maja Misirkic-Marjanovic; Kristina Janjetovic; Ljubica Vucicevic; Katarina Arsikin; Ljubica Harhaji-Trajkovic; Vladimir Trajkovic

We investigated the ability of 19 recently synthesized arylpiperazine compounds to protect human SH-SY5Y neuroblastoma cells from the neurotoxin 6-hydroxydopamine (6-OHDA). The compound with the most potent neuroprotective action was N-{3-[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-picolinamide (6b), which reduced 6-OHDA-induced apoptotic death through stabilization of mitochondrial membrane and subsequent prevention of superoxide production, caspase activation and DNA fragmentation. 6-OHDA-triggered autophagic response was also reduced by 6b, which prevented inactivation of the main autophagy repressor mTOR, upregulation of proautophagic beclin-1, conversion of microtubule-associated protein 1 light chain 3 (LC3)-I to autophagosome-associated LC3-II, as well as intracytoplasmic acidification induced by 6-OHDA. The inhibition of autophagy using LC3β gene silencing or pharmacological autophagy blockers 3-methyladenine or bafilomycin A1, mimicked the cytoprotective effect of 6b. While the treatment with 6b had no effect on the phosphorylation of proapoptotic MAP kinases ERK and JNK, it markedly increased the phosphorylation of the prosurvival kinase Akt in 6-OHDA-treated cells. Akt inhibitor DEBC or RNA interference-mediated Akt silencing reduced the ability of 6b to block 6-OHDA-triggered apoptotic and autophagic responses, thus confirming their dependency on Akt activation. The cytoprotective effect of 6b was also observed in 6-OHDA-treated neuronal PC12 cells, but not in SH-SY5Y or PC12 cells exposed to 1-methyl-4-phenylpyridinium, indicating that the observed neuroprotection was dependent on the cytotoxic stimulus. Because of the ability to prevent 6-OHDA induced apoptotic/autophagic cell death through activation of Akt, the investigated arylpiperazines could be potential candidates for treatment of neurodegenerative diseases.


Immunobiology | 2013

Increased activity of interleukin-23/interleukin-17 cytokine axis in primary antiphospholipid syndrome

Dragana Popovic-Kuzmanovic; Ivana Novakovic; Ljudmila Stojanovich; Ivona Aksentijevich; Nevena Zogovic; Gordana Tovilovic; Vladimir Trajkovic

The aim of the study was to investigate serum concentrations of interleukin (IL)-17 and IL-17-inducing cytokines IL-23 and transforming growth factor (TGF)-β, as well as IL-17 single nucleotide polymorphism (SNP) rs2275913 in patients with primary antiphospholipid syndrome (PAPS). We studied fifty patients with PAPS and fifty age- and sex-matched healthy controls. The cytokine levels were measured by ELISA, while the rs2275913 SNP located in promoter region of IL-17 gene was genotyped using real-time PCR. The significantly higher levels of IL-17 (p=0.002), IL-23 (p<0.001) and TGF-β (p=0.042) were found in PAPS patients (median 13.1, 9.4, and 125.6 pg/ml, respectively) compared to the control group (6.8, 4.9 and 44.4 pg/ml). There was a significant positive correlation between concentrations of IL-17 and IL-23 (r=0.540, p<0.001), but not between those of IL-17 and TGF-β. No statistically significant differences were observed in the distribution of genotypes and alleles of the IL-17 rs2275913 variants in patients with PAPS compared to healthy subjects. The blood concentrations of IL-17 did not differ in subjects with different rs2275913 genotypes or patients with or without antiphospholipid antibodies. Finally, a trend toward higher IL-17 levels (p=0.063) and the significantly higher IL-17 concentrations (p=0.012) were observed in PAPS patients with deep vein thrombosis and thrombocytopenia, respectively. These data demonstrate that IL-23/IL-17 axis, stimulated independently of TGF-β increase IL-17A gene polymorphism and antiphospholipid antibody production, might contribute to vascular manifestations of PAPS.


Journal of Neurochemistry | 2015

Coordinated activation of AMP‐activated protein kinase, extracellular signal‐regulated kinase, and autophagy regulates phorbol myristate acetate‐induced differentiation of SH‐SY5Y neuroblastoma cells

Nevena Zogovic; Gordana Tovilovic-Kovacevic; Maja Misirkic-Marjanovic; Ljubica Vucicevic; Kristina Janjetovic; Ljubica Harhaji-Trajkovic; Vladimir Trajkovic

We explored the interplay between the intracellular energy sensor AMP‐activated protein kinase (AMPK), extracellular signal‐regulated kinase (ERK), and autophagy in phorbol myristate acetate (PMA)‐induced neuronal differentiation of SH‐SY5Y human neuroblastoma cells. PMA‐triggered expression of neuronal markers (dopamine transporter, microtubule‐associated protein 2, β‐tubulin) was associated with an autophagic response, measured by the conversion of microtubule‐associated protein light chain 3 (LC3)‐I to autophagosome‐bound LC3‐II, increase in autophagic flux, and expression of autophagy‐related (Atg) proteins Atg7 and beclin‐1. This coincided with the transient activation of AMPK and sustained activation of ERK. Pharmacological inhibition or RNA interference‐mediated silencing of AMPK suppressed PMA‐induced expression of neuronal markers, as well as ERK activation and autophagy. A selective pharmacological blockade of ERK prevented PMA‐induced neuronal differentiation and autophagy induction without affecting AMPK phosphorylation. Conversely, the inhibition of autophagy downstream of AMPK/ERK, either by pharmacological agents or LC3 knockdown, promoted the expression of neuronal markers, thus indicating a role of autophagy in the suppression of PMA‐induced differentiation of SH‐SY5Y cells. Therefore, PMA‐induced neuronal differentiation of SH‐SY5Y cells depends on a complex interplay between AMPK, ERK, and autophagy, in which the stimulatory effects of AMPK/ERK signaling are counteracted by the coinciding autophagic response.


ChemMedChem | 2012

Arylpiperazine Dopamineric Ligands Protect Neuroblastoma Cells from Nitric Oxide (NO)-Induced Mitochondrial Damage and Apoptosis

Gordana Tovilovic; Nevena Zogovic; Ljubica Harhaji-Trajkovic; Maja Misirkic-Marjanovic; Kristina Janjetovic; Ljubica Vucicevic; Sladjana Kostic-Rajacic; André Schrattenholz; Aleksandra Isakovic; Vukic Soskic; Vladimir Trajkovic

The protective ability of novel arylpiperazine‐based dopaminergic ligands against nitric oxide (NO)‐mediated neurotoxicity is investigated. The most potent neuroprotective arylpiperazine identified during the study was N‐{4‐[2‐(4‐phenyl‐piperazin‐1‐yl)ethyl]‐phenyl}picolinamide, which protected SH‐SY5Y human neuron‐like cells from the proapoptotic effect of NO donor sodium nitroprusside (SNP) by decreasing oxidative stress, mitochondrial membrane depolarization, caspase activation and subsequent phosphatydilserine externalization/DNA fragmentation. The protective effect was associated with the inhibition of proapoptotic (JNK, ERK, AMPK) and activation of antiapoptotic (Akt) signaling pathways, in the absence of interference with intracellular NO accumulation. The neuroprotective action of arylpiperazines was shown to be independent of dopamine receptor binding, as it was not affected by the high‐affinity D1/D2 receptor blocker butaclamol. These results reported support the further study of arylpiperazines as potential neuroprotective agents.


Journal of Biological Chemistry | 2016

Synergistic Anticancer Action of Lysosomal Membrane Permeabilization and Glycolysis Inhibition

Milica Kosic; Katarina Arsikin-Csordas; Verica Paunovic; Raymond A. Firestone; Biljana Ristic; Aleksandar Mircic; Sasa Petricevic; Mihajlo Bosnjak; Nevena Zogovic; Miloš Mandić; Vladimir Bumbasirevic; Vladimir Trajkovic; Ljubica Harhaji-Trajkovic

We investigated the in vitro and in vivo anticancer effect of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-d-glucose (2DG). NDI-triggered LMP and 2DG-mediated glycolysis block synergized in inducing rapid ATP depletion, mitochondrial damage, and reactive oxygen species production, eventually leading to necrotic death of U251 glioma cells but not primary astrocytes. NDI/2DG-induced death of glioma cells was partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant α-tocopherol, suggesting the involvement of LMP and oxidative stress in the observed cytotoxicity. LMP-inducing agent chloroquine also displayed a synergistic anticancer effect with 2DG, whereas glucose deprivation or glycolytic inhibitors iodoacetate and sodium fluoride synergistically cooperated with NDI, thus further indicating that the anticancer effect of NDI/2DG combination was indeed due to LMP and glycolysis block. The two agents synergistically induced ATP depletion, mitochondrial depolarization, oxidative stress, and necrotic death also in B16 mouse melanoma cells. Moreover, the combined oral administration of NDI and 2DG reduced in vivo melanoma growth in C57BL/6 mice by inducing necrotic death of tumor cells, without causing liver, spleen, or kidney toxicity. Based on these results, we propose that NDI-triggered LMP causes initial mitochondrial damage that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial health. This leads to a positive feedback cycle of mitochondrial dysfunction, ATP loss, and reactive oxygen species production, culminating in necrotic cell death. Therefore, the combination of LMP-inducing agents and glycolysis inhibitors seems worthy of further exploration as an anticancer strategy.

Collaboration


Dive into the Nevena Zogovic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge