Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Graham A. Hitman is active.

Publication


Featured researches published by Graham A. Hitman.


The Lancet | 2004

Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial

H. M. Colhoun; D. John Betteridge; Paul N. Durrington; Graham A. Hitman; H. Andrew W. Neil; Shona Livingstone; Margaret J Thomason; Michael I. Mackness; Valentine Charlton-Menys; John H. Fuller

BACKGROUND Type 2 diabetes is associated with a substantially increased risk of cardiovascular disease, but the role of lipid-lowering therapy with statins for the primary prevention of cardiovascular disease in diabetes is inadequately defined. We aimed to assess the effectiveness of atorvastatin 10 mg daily for primary prevention of major cardiovascular events in patients with type 2 diabetes without high concentrations of LDL-cholesterol. METHODS 2838 patients aged 40-75 years in 132 centres in the UK and Ireland were randomised to placebo (n=1410) or atorvastatin 10 mg daily (n=1428). Study entrants had no documented previous history of cardiovascular disease, an LDL-cholesterol concentration of 4.14 mmol/L or lower, a fasting triglyceride amount of 6.78 mmol/L or less, and at least one of the following: retinopathy, albuminuria, current smoking, or hypertension. The primary endpoint was time to first occurrence of the following: acute coronary heart disease events, coronary revascularisation, or stroke. Analysis was by intention to treat. FINDINGS The trial was terminated 2 years earlier than expected because the prespecified early stopping rule for efficacy had been met. Median duration of follow-up was 3.9 years (IQR 3.0-4.7). 127 patients allocated placebo (2.46 per 100 person-years at risk) and 83 allocated atorvastatin (1.54 per 100 person-years at risk) had at least one major cardiovascular event (rate reduction 37% [95% CI -52 to -17], p=0.001). Treatment would be expected to prevent at least 37 major vascular events per 1000 such people treated for 4 years. Assessed separately, acute coronary heart disease events were reduced by 36% (-55 to -9), coronary revascularisations by 31% (-59 to 16), and rate of stroke by 48% (-69 to -11). Atorvastatin reduced the death rate by 27% (-48 to 1, p=0.059). No excess of adverse events was noted in the atorvastatin group. INTERPRETATION Atorvastatin 10 mg daily is safe and efficacious in reducing the risk of first cardiovascular disease events, including stroke, in patients with type 2 diabetes without high LDL-cholesterol. No justification is available for having a particular threshold level of LDL-cholesterol as the sole arbiter of which patients with type 2 diabetes should receive statins. The debate about whether all people with this disorder warrant statin treatment should now focus on whether any patients are at sufficiently low risk for this treatment to be withheld.


Science | 2007

Replication of Genome-Wide Association Signals in UK Samples Reveals Risk Loci for Type 2 Diabetes

Eleftheria Zeggini; Michael N. Weedon; Cecilia M. Lindgren; Timothy M. Frayling; Katherine S. Elliott; Hana Lango; Nicholas J. Timpson; John Perry; Nigel W. Rayner; Rachel M. Freathy; Jeffrey C. Barrett; Beverley M. Shields; Andrew P. Morris; Sian Ellard; Christopher J. Groves; Lorna W. Harries; Jonathan Marchini; Katharine R. Owen; Beatrice Knight; Lon R. Cardon; M. Walker; Graham A. Hitman; Andrew D. Morris; Alex S. F. Doney; Mark I. McCarthy; Andrew T. Hattersley

The molecular mechanisms involved in the development of type 2 diabetes are poorly understood. Starting from genome-wide genotype data for 1924 diabetic cases and 2938 population controls generated by the Wellcome Trust Case Control Consortium, we set out to detect replicated diabetes association signals through analysis of 3757 additional cases and 5346 controls and by integration of our findings with equivalent data from other international consortia. We detected diabetes susceptibility loci in and around the genes CDKAL1, CDKN2A/CDKN2B, and IGF2BP2 and confirmed the recently described associations at HHEX/IDE and SLC30A8. Our findings provide insight into the genetic architecture of type 2 diabetes, emphasizing the contribution of multiple variants of modest effect. The regions identified underscore the importance of pathways influencing pancreatic beta cell development and function in the etiology of type 2 diabetes.


Nature Genetics | 2008

Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes

Eleftheria Zeggini; Laura J. Scott; Richa Saxena; Benjamin F. Voight; Jonathan Marchini; Tianle Hu; Paul I. W. de Bakker; Gonçalo R. Abecasis; Peter Almgren; Gitte Andersen; Kristin Ardlie; Kristina Bengtsson Boström; Richard N. Bergman; Lori L. Bonnycastle; Knut Borch-Johnsen; Noël P. Burtt; Hong Chen; Peter S. Chines; Mark J. Daly; Parimal Deodhar; Chia-Jen Ding; Alex S. F. Doney; William L. Duren; Katherine S. Elliott; Michael R. Erdos; Timothy M. Frayling; Rachel M. Freathy; Lauren Gianniny; Harald Grallert; Niels Grarup

Genome-wide association (GWA) studies have identified multiple loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D). Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published analyses had limited power to identify variants with modest effects, we carried out meta-analysis of three T2D GWA scans comprising 10,128 individuals of European descent and ∼2.2 million SNPs (directly genotyped and imputed), followed by replication testing in an independent sample with an effective sample size of up to 53,975. We detected at least six previously unknown loci with robust evidence for association, including the JAZF1 (P = 5.0 × 10−14), CDC123-CAMK1D (P = 1.2 × 10−10), TSPAN8-LGR5 (P = 1.1 × 10−9), THADA (P = 1.1 × 10−9), ADAMTS9 (P = 1.2 × 10−8) and NOTCH2 (P = 4.1 × 10−8) gene regions. Our results illustrate the value of large discovery and follow-up samples for gaining further insights into the inherited basis of T2D.


Cell | 1999

Germline Mutations in the Extracellular Domains of the 55 kDa TNF Receptor, TNFR1, Define a Family of Dominantly Inherited Autoinflammatory Syndromes

Michael F. McDermott; Ivona Aksentijevich; Jérôme Galon; Elizabeth McDermott; B. William Ogunkolade; Michael Centola; Elizabeth Mansfield; Massimo Gadina; Leena Karenko; Tom Pettersson; John McCarthy; David M. Frucht; Martin Aringer; Yelizaveta Torosyan; Anna-Maija Teppo; Meredith Wilson; H.Mehmet Karaarslan; Ying Wan; Ian Todd; Geryl Wood; Ryan Schlimgen; Thisum R. Kumarajeewa; Sheldon M. Cooper; John P. Vella; Christopher I. Amos; John C. Mulley; Kathleen A. Quane; Michael G. Molloy; Annamari Ranki; Richard J. Powell

Autosomal dominant periodic fever syndromes are characterized by unexplained episodes of fever and severe localized inflammation. In seven affected families, we found six different missense mutations of the 55 kDa tumor necrosis factor receptor (TNFR1), five of which disrupt conserved extracellular disulfide bonds. Soluble plasma TNFR1 levels in patients were approximately half normal. Leukocytes bearing a C52F mutation showed increased membrane TNFR1 and reduced receptor cleavage following stimulation. We propose that the autoinflammatory phenotype results from impaired downregulation of membrane TNFR1 and diminished shedding of potentially antagonistic soluble receptor. TNFR1-associated periodic syndromes (TRAPS) establish an important class of mutations in TNF receptors. Detailed analysis of one such mutation suggests impaired cytokine receptor clearance as a novel mechanism of disease.


JAMA | 2012

Association of LDL Cholesterol, Non–HDL Cholesterol, and Apolipoprotein B Levels With Risk of Cardiovascular Events Among Patients Treated With Statins: A Meta-analysis

S. Matthijs Boekholdt; Benoit J. Arsenault; Samia Mora; Terje R. Pedersen; John C. LaRosa; Paul J. Nestel; R. John Simes; Paul N. Durrington; Graham A. Hitman; K. M. A. Welch; David A. DeMicco; Aeilko H. Zwinderman; Michael Clearfield; John R. Downs; Andrew Tonkin; Helen M. Colhoun; Antonio M. Gotto; Paul M. Ridker; John J. P. Kastelein

CONTEXT The associations of low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol (non-HDL-C), and apolipoprotein B (apoB) levels with the risk of cardiovascular events among patients treated with statin therapy have not been reliably documented. OBJECTIVE To evaluate the relative strength of the associations of LDL-C, non-HDL-C, and apoB with cardiovascular risk among patients treated with statin therapy. DESIGN Meta-analysis of individual patient data from randomized controlled statin trials in which conventional lipids and apolipoproteins were determined in all study participants at baseline and at 1-year follow-up. DATA SOURCES Relevant trials were identified by a literature search updated through December 31, 2011. Investigators were contacted and individual patient data were requested and obtained for 62,154 patients enrolled in 8 trials published between 1994 and 2008. DATA EXTRACTION Hazard ratios (HRs) and corresponding 95% CIs for risk of major cardiovascular events adjusted for established risk factors by 1-SD increase in LDL-C, non-HDL-C, and apoB. RESULTS Among 38,153 patients allocated to statin therapy, 158 fatal myocardial infarctions, 1678 nonfatal myocardial infarctions, 615 fatal events from other coronary artery disease, 2806 hospitalizations for unstable angina, and 1029 fatal or nonfatal strokes occurred during follow-up. The adjusted HRs for major cardiovascular events per 1-SD increase were 1.13 (95% CI, 1.10-1.17) for LDL-C, 1.16 (95% CI, 1.12-1.19) for non-HDL-C, and 1.14 (95% CI, 1.11-1.18) for apoB. These HRs were significantly higher for non-HDL-C than LDL-C (P = .002) and apoB (P = .02). There was no significant difference between apoB and LDL-C (P = .21). CONCLUSION Among statin-treated patients, on-treatment levels of LDL-C, non-HDL-C, and apoB were each associated with risk of future major cardiovascular events, but the strength of this association was greater for non-HDL-C than for LDL-C and apoB.


Nature Genetics | 2007

Common variants in WFS1 confer risk of type 2 diabetes

Manjinder S. Sandhu; Michael N. Weedon; Katherine Fawcett; Jon Wasson; Sally L Debenham; Allan Daly; Hana Lango; Timothy M. Frayling; Rosalind J Neumann; Richard Sherva; Ilana Blech; Paul Pharoah; Colin N. A. Palmer; Charlotte H. Kimber; Roger Tavendale; Andrew D. Morris; Mark McCarthy; Mark Walker; Graham A. Hitman; Benjamin Glaser; M. Alan Permutt; Andrew T. Hattersley; Nicholas J. Wareham; Inês Barroso

We studied genes involved in pancreatic β cell function and survival, identifying associations between SNPs in WFS1 and diabetes risk in UK populations that we replicated in an Ashkenazi population and in additional UK studies. In a pooled analysis comprising 9,533 cases and 11,389 controls, SNPs in WFS1 were strongly associated with diabetes risk. Rare mutations in WFS1 cause Wolfram syndrome; using a gene-centric approach, we show that variation in WFS1 also predisposes to common type 2 diabetes.


American Journal of Human Genetics | 2001

A Genomewide Scan for Loci Predisposing to Type 2 Diabetes in a U.K. Population (The Diabetes UK Warren 2 Repository): Analysis of 573 Pedigrees Provides Independent Replication of a Susceptibility Locus on Chromosome 1q

Steven Wiltshire; Andrew T. Hattersley; Graham A. Hitman; M. Walker; Jonathan C. Levy; Mike Sampson; Stephen O’Rahilly; Timothy M. Frayling; John I. Bell; G. Mark Lathrop; Amanda J. Bennett; Ranjit Dhillon; C Fletcher; Christopher J. Groves; Elizabeth Jones; Philip Prestwich; Nikol Simecek; Pamidighantam V. Subba Rao; Marie Wishart; Richard Foxon; Simon L. Howell; Damian Smedley; Lon R. Cardon; Stephan Menzel; Mark I. McCarthy

Improved molecular understanding of the pathogenesis of type 2 diabetes is essential if current therapeutic and preventative options are to be extended. To identify diabetes-susceptibility genes, we have completed a primary (418-marker, 9-cM) autosomal-genome scan of 743 sib pairs (573 pedigrees) with type 2 diabetes who are from the Diabetes UK Warren 2 repository. Nonparametric linkage analysis of the entire data set identified seven regions showing evidence for linkage, with allele-sharing LOD scores > or =1.18 (P< or =.01). The strongest evidence was seen on chromosomes 8p21-22 (near D8S258 [LOD score 2.55]) and 10q23.3 (near D10S1765 [LOD score 1.99]), both coinciding with regions identified in previous scans in European subjects. This was also true of two lesser regions identified, on chromosomes 5q13 (D5S647 [LOD score 1.22] and 5q32 (D5S436 [LOD score 1.22]). Loci on 7p15.3 (LOD score 1.31) and 8q24.2 (LOD score 1.41) are novel. The final region showing evidence for linkage, on chromosome 1q24-25 (near D1S218 [LOD score 1.50]), colocalizes with evidence for linkage to diabetes found in Utah, French, and Pima families and in the GK rat. After dense-map genotyping (mean marker spacing 4.4 cM), evidence for linkage to this region increased to a LOD score of 1.98. Conditional analyses revealed nominally significant interactions between this locus and the regions on chromosomes 10q23.3 (P=.01) and 5q32 (P=.02). These data, derived from one of the largest genome scans undertaken in this condition, confirm that individual susceptibility-gene effects for type 2 diabetes are likely to be modest in size. Taken with genome scans in other populations, they provide both replication of previous evidence indicating the presence of a diabetes-susceptibility locus on chromosome 1q24-25 and support for the existence of additional loci on chromosomes 5, 8, and 10. These data should accelerate positional cloning efforts in these regions of interest.


Diabetes | 2006

Association Analysis of 6,736 U.K. Subjects Provides Replication and Confirms TCF7L2 as a Type 2 Diabetes Susceptibility Gene With a Substantial Effect on Individual Risk

Christopher J. Groves; Eleftheria Zeggini; Jayne Minton; Timothy M. Frayling; Michael N. Weedon; N W Rayner; Graham A. Hitman; M. Walker; Steven Wiltshire; Andrew T. Hattersley; Mark I. McCarthy

Recent data suggest that common variation in the transcription factor 7-like 2 (TCF7L2) gene is associated with type 2 diabetes. Evaluation of such associations in independent samples provides necessary replication and a robust assessment of effect size. Using four TCF7L2 single nucleotide polymorphisms (SNPs; including the two most associated in the previous study), we conducted a case-control study in 2,158 type 2 diabetic subjects and 2,574 control subjects and a family-based association analysis in 388 parent-offspring trios all from the U.K. All SNPs showed powerful associations with diabetes in the case-control analysis, with strongest effects at rs7903146 (allele-wise relative risk 1.36 [95% CI 1.24–1.48], P = 1.3 × 10−11). Data were consistent with a multiplicative model. The family-based analyses provided independent evidence for association at all loci (e.g., rs4506565, 62% transmission, P = 7 × 10−5) with no parent-of-origin effects. The frequency of diabetes-associated TCF7L2 genotypes was greater in cases ascertained for positive family history and early onset (rs4606565, P = 0.02); the population-attributable risk, estimated from the least-selected cases, is ∼16%. The overall evidence for association for these variants (P = 4.4 × 10−14 combining case-control and family-based analyses for rs4506565) exceeds genome-wide significance criteria and clearly establishes TCF7L2 as a type 2 diabetes susceptibility gene of substantial importance.


Journal of the American College of Cardiology | 2014

Very low levels of atherogenic lipoproteins and the risk for cardiovascular events: a meta-analysis of statin trials.

S. Matthijs Boekholdt; G. Kees Hovingh; Samia Mora; Benoit J. Arsenault; Pierre Amarenco; Terje R. Pedersen; John C. LaRosa; David D. Waters; David A. DeMicco; R. John Simes; Antony C. Keech; David Colquhoun; Graham A. Hitman; D. John Betteridge; Michael Clearfield; John R. Downs; Helen M. Colhoun; Antonio M. Gotto; Paul M. Ridker; Scott M. Grundy; John J. P. Kastelein

BACKGROUND Levels of atherogenic lipoproteins achieved with statin therapy are highly variable, but the consequence of this variability for cardiovascular disease risk is not well-documented. OBJECTIVES The aim of this meta-analysis was to evaluate: 1) the interindividual variability of reductions in low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol (non-HDL-C), or apolipoprotein B (apoB) levels achieved with statin therapy; 2) the proportion of patients not reaching guideline-recommended lipid levels on high-dose statin therapy; and 3) the association between very low levels of atherogenic lipoproteins achieved with statin therapy and cardiovascular disease risk. METHODS This meta-analysis used individual patient data from 8 randomized controlled statin trials, in which conventional lipids and apolipoproteins were determined in all study participants at baseline and at 1-year follow-up. RESULTS Among 38,153 patients allocated to statin therapy, a total of 6,286 major cardiovascular events occurred in 5,387 study participants during follow-up. There was large interindividual variability in the reductions of LDL-C, non-HDL-C, and apoB achieved with a fixed statin dose. More than 40% of trial participants assigned to high-dose statin therapy did not reach an LDL-C target <70 mg/dl. Compared with patients who achieved an LDL-C >175 mg/dl, those who reached an LDL-C 75 to <100 mg/dl, 50 to <75 mg/dl, and <50 mg/dl had adjusted hazard ratios for major cardiovascular events of 0.56 (95% confidence interval [CI]: 0.46 to 0.67), 0.51 (95% CI: 0.42 to 0.62), and 0.44 (95% CI: 0.35 to 0.55), respectively. Similar associations were observed for non-HDL-C and apoB. CONCLUSIONS The reductions of LDL-C, non-HDL-C, and apoB levels achieved with statin therapy displayed large interindividual variation. Among trial participants treated with high-dose statin therapy, >40% did not reach an LDL-C target <70 mg/dl. Patients who achieve very low LDL-C levels have a lower risk for major cardiovascular events than do those achieving moderately low levels.


PLOS ONE | 2010

Integrated Genetic and Epigenetic Analysis Identifies Haplotype-Specific Methylation in the FTO Type 2 Diabetes and Obesity Susceptibility Locus

Christopher G. Bell; Sarah Finer; Cecilia M. Lindgren; Gareth A. Wilson; Vardhman K. Rakyan; Andrew E. Teschendorff; Pelin Akan; Elia Stupka; Thomas A. Down; Inga Prokopenko; Ian M. Morison; Jonathan Mill; Ruth Pidsley; Panos Deloukas; Timothy M. Frayling; Andrew T. Hattersley; Mark I. McCarthy; Stephan Beck; Graham A. Hitman

Recent multi-dimensional approaches to the study of complex disease have revealed powerful insights into how genetic and epigenetic factors may underlie their aetiopathogenesis. We examined genotype-epigenotype interactions in the context of Type 2 Diabetes (T2D), focussing on known regions of genomic susceptibility. We assayed DNA methylation in 60 females, stratified according to disease susceptibility haplotype using previously identified association loci. CpG methylation was assessed using methylated DNA immunoprecipitation on a targeted array (MeDIP-chip) and absolute methylation values were estimated using a Bayesian algorithm (BATMAN). Absolute methylation levels were quantified across LD blocks, and we identified increased DNA methylation on the FTO obesity susceptibility haplotype, tagged by the rs8050136 risk allele A (p = 9.40×10−4, permutation p = 1.0×10−3). Further analysis across the 46 kb LD block using sliding windows localised the most significant difference to be within a 7.7 kb region (p = 1.13×10−7). Sequence level analysis, followed by pyrosequencing validation, revealed that the methylation difference was driven by the co-ordinated phase of CpG-creating SNPs across the risk haplotype. This 7.7 kb region of haplotype-specific methylation (HSM), encapsulates a Highly Conserved Non-Coding Element (HCNE) that has previously been validated as a long-range enhancer, supported by the histone H3K4me1 enhancer signature. This study demonstrates that integration of Genome-Wide Association (GWA) SNP and epigenomic DNA methylation data can identify potential novel genotype-epigenotype interactions within disease-associated loci, thus providing a novel route to aid unravelling common complex diseases.

Collaboration


Dive into the Graham A. Hitman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge