Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher J. Groves is active.

Publication


Featured researches published by Christopher J. Groves.


Science | 2007

Replication of Genome-Wide Association Signals in UK Samples Reveals Risk Loci for Type 2 Diabetes

Eleftheria Zeggini; Michael N. Weedon; Cecilia M. Lindgren; Timothy M. Frayling; Katherine S. Elliott; Hana Lango; Nicholas J. Timpson; John Perry; Nigel W. Rayner; Rachel M. Freathy; Jeffrey C. Barrett; Beverley M. Shields; Andrew P. Morris; Sian Ellard; Christopher J. Groves; Lorna W. Harries; Jonathan Marchini; Katharine R. Owen; Beatrice Knight; Lon R. Cardon; M. Walker; Graham A. Hitman; Andrew D. Morris; Alex S. F. Doney; Mark I. McCarthy; Andrew T. Hattersley

The molecular mechanisms involved in the development of type 2 diabetes are poorly understood. Starting from genome-wide genotype data for 1924 diabetic cases and 2938 population controls generated by the Wellcome Trust Case Control Consortium, we set out to detect replicated diabetes association signals through analysis of 3757 additional cases and 5346 controls and by integration of our findings with equivalent data from other international consortia. We detected diabetes susceptibility loci in and around the genes CDKAL1, CDKN2A/CDKN2B, and IGF2BP2 and confirmed the recently described associations at HHEX/IDE and SLC30A8. Our findings provide insight into the genetic architecture of type 2 diabetes, emphasizing the contribution of multiple variants of modest effect. The regions identified underscore the importance of pathways influencing pancreatic beta cell development and function in the etiology of type 2 diabetes.


Nature Genetics | 2008

Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes

Eleftheria Zeggini; Laura J. Scott; Richa Saxena; Benjamin F. Voight; Jonathan Marchini; Tianle Hu; Paul I. W. de Bakker; Gonçalo R. Abecasis; Peter Almgren; Gitte Andersen; Kristin Ardlie; Kristina Bengtsson Boström; Richard N. Bergman; Lori L. Bonnycastle; Knut Borch-Johnsen; Noël P. Burtt; Hong Chen; Peter S. Chines; Mark J. Daly; Parimal Deodhar; Chia-Jen Ding; Alex S. F. Doney; William L. Duren; Katherine S. Elliott; Michael R. Erdos; Timothy M. Frayling; Rachel M. Freathy; Lauren Gianniny; Harald Grallert; Niels Grarup

Genome-wide association (GWA) studies have identified multiple loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D). Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published analyses had limited power to identify variants with modest effects, we carried out meta-analysis of three T2D GWA scans comprising 10,128 individuals of European descent and ∼2.2 million SNPs (directly genotyped and imputed), followed by replication testing in an independent sample with an effective sample size of up to 53,975. We detected at least six previously unknown loci with robust evidence for association, including the JAZF1 (P = 5.0 × 10−14), CDC123-CAMK1D (P = 1.2 × 10−10), TSPAN8-LGR5 (P = 1.1 × 10−9), THADA (P = 1.1 × 10−9), ADAMTS9 (P = 1.2 × 10−8) and NOTCH2 (P = 4.1 × 10−8) gene regions. Our results illustrate the value of large discovery and follow-up samples for gaining further insights into the inherited basis of T2D.


American Journal of Human Genetics | 2001

A Genomewide Scan for Loci Predisposing to Type 2 Diabetes in a U.K. Population (The Diabetes UK Warren 2 Repository): Analysis of 573 Pedigrees Provides Independent Replication of a Susceptibility Locus on Chromosome 1q

Steven Wiltshire; Andrew T. Hattersley; Graham A. Hitman; M. Walker; Jonathan C. Levy; Mike Sampson; Stephen O’Rahilly; Timothy M. Frayling; John I. Bell; G. Mark Lathrop; Amanda J. Bennett; Ranjit Dhillon; C Fletcher; Christopher J. Groves; Elizabeth Jones; Philip Prestwich; Nikol Simecek; Pamidighantam V. Subba Rao; Marie Wishart; Richard Foxon; Simon L. Howell; Damian Smedley; Lon R. Cardon; Stephan Menzel; Mark I. McCarthy

Improved molecular understanding of the pathogenesis of type 2 diabetes is essential if current therapeutic and preventative options are to be extended. To identify diabetes-susceptibility genes, we have completed a primary (418-marker, 9-cM) autosomal-genome scan of 743 sib pairs (573 pedigrees) with type 2 diabetes who are from the Diabetes UK Warren 2 repository. Nonparametric linkage analysis of the entire data set identified seven regions showing evidence for linkage, with allele-sharing LOD scores > or =1.18 (P< or =.01). The strongest evidence was seen on chromosomes 8p21-22 (near D8S258 [LOD score 2.55]) and 10q23.3 (near D10S1765 [LOD score 1.99]), both coinciding with regions identified in previous scans in European subjects. This was also true of two lesser regions identified, on chromosomes 5q13 (D5S647 [LOD score 1.22] and 5q32 (D5S436 [LOD score 1.22]). Loci on 7p15.3 (LOD score 1.31) and 8q24.2 (LOD score 1.41) are novel. The final region showing evidence for linkage, on chromosome 1q24-25 (near D1S218 [LOD score 1.50]), colocalizes with evidence for linkage to diabetes found in Utah, French, and Pima families and in the GK rat. After dense-map genotyping (mean marker spacing 4.4 cM), evidence for linkage to this region increased to a LOD score of 1.98. Conditional analyses revealed nominally significant interactions between this locus and the regions on chromosomes 10q23.3 (P=.01) and 5q32 (P=.02). These data, derived from one of the largest genome scans undertaken in this condition, confirm that individual susceptibility-gene effects for type 2 diabetes are likely to be modest in size. Taken with genome scans in other populations, they provide both replication of previous evidence indicating the presence of a diabetes-susceptibility locus on chromosome 1q24-25 and support for the existence of additional loci on chromosomes 5, 8, and 10. These data should accelerate positional cloning efforts in these regions of interest.


Diabetes | 2006

Association Analysis of 6,736 U.K. Subjects Provides Replication and Confirms TCF7L2 as a Type 2 Diabetes Susceptibility Gene With a Substantial Effect on Individual Risk

Christopher J. Groves; Eleftheria Zeggini; Jayne Minton; Timothy M. Frayling; Michael N. Weedon; N W Rayner; Graham A. Hitman; M. Walker; Steven Wiltshire; Andrew T. Hattersley; Mark I. McCarthy

Recent data suggest that common variation in the transcription factor 7-like 2 (TCF7L2) gene is associated with type 2 diabetes. Evaluation of such associations in independent samples provides necessary replication and a robust assessment of effect size. Using four TCF7L2 single nucleotide polymorphisms (SNPs; including the two most associated in the previous study), we conducted a case-control study in 2,158 type 2 diabetic subjects and 2,574 control subjects and a family-based association analysis in 388 parent-offspring trios all from the U.K. All SNPs showed powerful associations with diabetes in the case-control analysis, with strongest effects at rs7903146 (allele-wise relative risk 1.36 [95% CI 1.24–1.48], P = 1.3 × 10−11). Data were consistent with a multiplicative model. The family-based analyses provided independent evidence for association at all loci (e.g., rs4506565, 62% transmission, P = 7 × 10−5) with no parent-of-origin effects. The frequency of diabetes-associated TCF7L2 genotypes was greater in cases ascertained for positive family history and early onset (rs4606565, P = 0.02); the population-attributable risk, estimated from the least-selected cases, is ∼16%. The overall evidence for association for these variants (P = 4.4 × 10−14 combining case-control and family-based analyses for rs4506565) exceeds genome-wide significance criteria and clearly establishes TCF7L2 as a type 2 diabetes susceptibility gene of substantial importance.


Human Molecular Genetics | 2010

Genetic evidence that raised Sex Hormone Binding Globulin (SHBG) levels reduce the risk of type 2 diabetes

John Perry; Michael N. Weedon; Claudia Langenberg; Anne U. Jackson; Valeriya Lyssenko; Thomas Sparsø; Gudmar Thorleifsson; Harald Grallert; Luigi Ferrucci; Marcello Maggio; Giuseppe Paolisso; M. Walker; Colin N. A. Palmer; Felicity Payne; Elizabeth H. Young; Christian Herder; Mario A. Morken; Lori L. Bonnycastle; Katharine R. Owen; Beverley M. Shields; Beatrice Knight; Amanda Bennett; Christopher J. Groves; Aimo Ruokonen; Marjo-Riitta Järvelin; Ewan R. Pearson; Laura Pascoe; Ele Ferrannini; Stefan R. Bornstein; Heather M. Stringham

Epidemiological studies consistently show that circulating sex hormone binding globulin (SHBG) levels are lower in type 2 diabetes patients than non-diabetic individuals, but the causal nature of this association is controversial. Genetic studies can help dissect causal directions of epidemiological associations because genotypes are much less likely to be confounded, biased or influenced by disease processes. Using this Mendelian randomization principle, we selected a common single nucleotide polymorphism (SNP) near the SHBG gene, rs1799941, that is strongly associated with SHBG levels. We used data from this SNP, or closely correlated SNPs, in 27 657 type 2 diabetes patients and 58 481 controls from 15 studies. We then used data from additional studies to estimate the difference in SHBG levels between type 2 diabetes patients and controls. The SHBG SNP rs1799941 was associated with type 2 diabetes [odds ratio (OR) 0.94, 95% CI: 0.91, 0.97; P = 2 × 10−5], with the SHBG raising allele associated with reduced risk of type 2 diabetes. This effect was very similar to that expected (OR 0.92, 95% CI: 0.88, 0.96), given the SHBG-SNP versus SHBG levels association (SHBG levels are 0.2 standard deviations higher per copy of the A allele) and the SHBG levels versus type 2 diabetes association (SHBG levels are 0.23 standard deviations lower in type 2 diabetic patients compared to controls). Results were very similar in men and women. There was no evidence that this variant is associated with diabetes-related intermediate traits, including several measures of insulin secretion and resistance. Our results, together with those from another recent genetic study, strengthen evidence that SHBG and sex hormones are involved in the aetiology of type 2 diabetes.


Diabetes | 2009

Type 2 diabetes risk alleles are associated with reduced size at birth.

Rachel M. Freathy; Amanda J. Bennett; Susan M. Ring; Beverley M. Shields; Christopher J. Groves; Nicholas J. Timpson; Michael N. Weedon; Eleftheria Zeggini; Cecilia M. Lindgren; Hana Lango; John Perry; Anneli Pouta; Aimo Ruokonen; Elina Hyppönen; Chris Power; Paul Elliott; David P. Strachan; Marjo-Riitta Järvelin; George Davey Smith; Mark McCarthy; Timothy M. Frayling; Andrew T. Hattersley

OBJECTIVE Low birth weight is associated with an increased risk of type 2 diabetes. The mechanisms underlying this association are unknown and may represent intrauterine programming or two phenotypes of one genotype. The fetal insulin hypothesis proposes that common genetic variants that reduce insulin secretion or action may predispose to type 2 diabetes and also reduce birth weight, since insulin is a key fetal growth factor. We tested whether common genetic variants that predispose to type 2 diabetes also reduce birth weight. RESEARCH DESIGN AND METHODS We genotyped single-nucleotide polymorphisms (SNPs) at five recently identified type 2 diabetes loci (CDKAL1, CDKN2A/B, HHEX-IDE, IGF2BP2, and SLC30A8) in 7,986 mothers and 19,200 offspring from four studies of white Europeans. We tested the association between maternal or fetal genotype at each locus and birth weight of the offspring. RESULTS We found that type 2 diabetes risk alleles at the CDKAL1 and HHEX-IDE loci were associated with reduced birth weight when inherited by the fetus (21 g [95% CI 11–31], P = 2 × 10−5, and 14 g [4–23], P = 0.004, lower birth weight per risk allele, respectively). The 4% of offspring carrying four risk alleles at these two loci were 80 g (95% CI 39–120) lighter at birth than the 8% carrying none (Ptrend = 5 × 10−7). There were no associations between birth weight and fetal genotypes at the three other loci or maternal genotypes at any locus. CONCLUSIONS Our results are in keeping with the fetal insulin hypothesis and provide robust evidence that common disease-associated variants can alter size at birth directly through the fetal genotype.


American Journal of Human Genetics | 2007

Type 2 Diabetes TCF7L2 Risk Genotypes Alter Birth Weight: A Study of 24,053 Individuals

Rachel M. Freathy; Michael N. Weedon; Amanda J. Bennett; Elina Hyppönen; Caroline L Relton; Beatrice Knight; Beverley M. Shields; K. Parnell; Christopher J. Groves; Susan M. Ring; Marcus Pembrey; Yoav Ben-Shlomo; David P. Strachan; Chris Power; Marjo-Riitta Järvelin; Mark McCarthy; George Davey Smith; Andrew T. Hattersley; Timothy M. Frayling

The role of genes in normal birth-weight variation is poorly understood, and it has been suggested that the genetic component of fetal growth is small. Type 2 diabetes genes may influence birth weight through maternal genotype, by increasing maternal glycemia in pregnancy, or through fetal genotype, by altering fetal insulin secretion. We aimed to assess the role of the recently described type 2 diabetes gene TCF7L2 in birth weight. We genotyped the polymorphism rs7903146 in 15,709 individuals whose birth weight was available from six studies and in 8,344 mothers from three studies. Each fetal copy of the predisposing allele was associated with an 18-g (95% confidence interval [CI] 7-29 g) increase in birth weight (P=.001) and each maternal copy with a 30-g (95% CI 15-45 g) increase in offspring birth weight (P=2.8x10-5). Stratification by fetal genotype suggested that the association was driven by maternal genotype (31-g [95% CI 9-48 g] increase per allele; corrected P=.003). Analysis of diabetes-related traits in 10,314 nondiabetic individuals suggested the most likely mechanism is that the risk allele reduces maternal insulin secretion (disposition index reduced by ~0.15 standard deviation; P=1x10-4), which results in increased maternal glycemia in pregnancy and hence increased offspring birth weight. We combined information with the other common variant known to alter fetal growth, the -30G-->A polymorphism of glucokinase (rs1799884). The 4% of offspring born to mothers carrying three or four risk alleles were 119 g (95% CI 62-172 g) heavier than were the 32% born to mothers with none (for overall trend, P=2x10-7), comparable to the impact of maternal smoking during pregnancy. In conclusion, we have identified the first type 2 diabetes-susceptibility allele to be reproducibly associated with birth weight. Common gene variants can substantially influence normal birth-weight variation.


Journal of Human Genetics | 2005

Genetic variations in the gene encoding TFAP2B are associated with type 2 diabetes mellitus

Shiro Maeda; Shuichi Tsukada; Akio Kanazawa; Akihiro Sekine; Tatsuhiko Tsunoda; Daisuke Koya; Hiroshi Maegawa; Atsunori Kashiwagi; Tetsuya Babazono; Yasushi Tanaka; Tomoaki Fujioka; Hiroshi Hirose; Takashi Eguchi; Yoichi Ohno; Christopher J. Groves; Andrew T. Hattersley; Graham A. Hitman; M. Walker; Kohei Kaku; Yasuhiko Iwamoto; Ryuzo Kawamori; Ryuichi Kikkawa; Naoyuki Kamatani; Mark I. McCarthy; Yusuke Nakamura

AbstractTo search a gene(s) conferring susceptibility to type 2 diabetes mellitus, we genotyped nearly 60,000 gene-based SNPs for Japanese patients and found evidence that the gene at chromosome 6p12 encoding transcription-factor-activating protein 2β (TFAP2B) was a likely candidate in view of significant association of polymorphism in this gene with type 2 diabetes. Extensive analysis of this region identified that several variations within TFAP2B were significantly associated with type 2 diabetes [a variable number of tandem repeat locus: χ2=10.9, P=0.0009; odds ratio=1.57, 95% CI 1.20-2.06, intron 1+774 (G/T); χ2=11.6, P=0.0006; odds ratio=1.60, 95% CI 1.22-2.09, intron 1+2093 (A/C); χ2=12.2, P=0.0004; odds ratio=1.61, 95% CI 1.23-2.11]. The association of TFAP2B with type 2 diabetes was also observed in the UK population. These results suggest that TFAP2B might be a new candidate for conferring susceptibility to type 2 diabetes and contribute to the pathogenesis of type 2 diabetes.


Colorectal Disease | 2006

Pre-pouch ileitis: a disease of the ileum in ulcerative colitis after restorative proctocolectomy.

A J Bell; Ashley B. Price; Alastair Forbes; Paul J. Ciclitira; Christopher J. Groves; R. J. Nicholls

Objective  Ileal inflammation in ulcerative colitis can occur as backwash ileitis or prestomal ileitis. After restorative proctocolectomy (RPC), ileal inflammation may be present in the pouch (pouchitis) but inflammation proximal to the pouch in the neo‐terminal ileum, so called pre‐pouch ileitis (PI), has also been observed. As pouchitis is increasingly common and PI can mimic it, our aim was to characterize this condition.


American Journal of Human Genetics | 2002

Evidence for Linkage of Stature to Chromosome 3p26 in a Large U.K. Family Data Set Ascertained for Type 2 Diabetes

Steven Wiltshire; Timothy M. Frayling; Andrew T. Hattersley; Graham A. Hitman; M. Walker; Jonathan C. Levy; Stephen O'Rahilly; Christopher J. Groves; Stephan Menzel; Lon R. Cardon; Mark I. McCarthy

We have analyzed data from 573 pedigrees from the United Kingdom for evidence for linkage to loci influencing adult stature. Our data set comprised 1,214 diabetic and 163 nondiabetic siblings for whom height data were available. We used variance-components analysis implemented in GENEHUNTER 2 and a modification of the Haseman-Elston regression method, HE-COM. We found evidence for a locus on 3p26 (LOD score 3.17) influencing height in this adult sample, with less-significant evidence for loci on chromosomes 7, 10, 15, 17, 19, and 20. Our findings extend similar recent studies in Scandinavian and Quebecois populations, adding further evidence that height is indeed under the control of multiple genes.

Collaboration


Dive into the Christopher J. Groves's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eleftheria Zeggini

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Graham A. Hitman

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven Wiltshire

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge