Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Greg M. Kowalski is active.

Publication


Featured researches published by Greg M. Kowalski.


Diabetes | 2012

Overexpression of Sphingosine Kinase 1 Prevents Ceramide Accumulation and Ameliorates Muscle Insulin Resistance in High-Fat Diet–Fed Mice

Clinton R. Bruce; Steve Risis; Joanne R Babb; Christine Yang; Greg M. Kowalski; Ahrathy Selathurai; Robert S. Lee-Young; Jacquelyn M. Weir; Kazuaki Yoshioka; Yoh Takuwa; Peter J. Meikle; Stuart M. Pitson; Mark A. Febbraio

The sphingolipids sphingosine-1-phosphate (S1P) and ceramide are important bioactive lipids with many cellular effects. Intracellular ceramide accumulation causes insulin resistance, but sphingosine kinase 1 (SphK1) prevents ceramide accumulation, in part, by promoting its metabolism into S1P. Despite this, the role of SphK1 in regulating insulin action has been largely overlooked. Transgenic (Tg) mice that overexpress SphK1 were fed a standard chow or high-fat diet (HFD) for 6 weeks before undergoing several metabolic analyses. SphK1 Tg mice fed an HFD displayed increased SphK activity in skeletal muscle, which was associated with an attenuated intramuscular ceramide accumulation compared with wild-type (WT) littermates. This was associated with a concomitant reduction in the phosphorylation of c-jun amino-terminal kinase, a serine threonine kinase associated with insulin resistance. Accordingly, skeletal muscle and whole-body insulin sensitivity were improved in SphK1 Tg, compared with WT mice, when fed an HFD. We have identified that the enzyme SphK1 is an important regulator of lipid partitioning and insulin action in skeletal muscle under conditions of increased lipid supply.


PLOS ONE | 2013

Plasma sphingosine-1-phosphate is elevated in obesity.

Greg M. Kowalski; Andrew L. Carey; Ahrathy Selathurai; Bronwyn A. Kingwell; Clinton R. Bruce

Background Dysfunctional lipid metabolism is a hallmark of obesity and insulin resistance and a risk factor for various cardiovascular and metabolic complications. In addition to the well known increase in plasma triglycerides and free fatty acids, recent work in humans and rodents has shown that obesity is associated with elevations in the bioactive class of sphingolipids known as ceramides. However, in obesity little is known about the plasma concentrations of sphinogsine-1-phosphate (S1P), the breakdown product of ceramide, which is an important signaling molecule in mammalian biology. Therefore, the purpose of this study was to examine the impact of obesity on circulating S1P concentration and its relationship with markers of glucose metabolism and insulin sensitivity. Methodology/Principal Findings Plasma S1P levels were determined in high-fat diet (HFD)-induced and genetically obese (ob/ob) mice along with obese humans. Circulating S1P was elevated in both obese mouse models and in obese humans compared with lean healthy controls. Furthermore, in humans, plasma S1P positively correlated with total body fat percentage, body mass index (BMI), waist circumference, fasting insulin, HOMA-IR, HbA1c (%), total and LDL cholesterol. In addition, fasting increased plasma S1P levels in lean healthy mice. Conclusion We show that elevations in plasma S1P are a feature of both human and rodent obesity and correlate with metabolic abnormalities such as adiposity and insulin resistance.


American Journal of Physiology-endocrinology and Metabolism | 2014

The regulation of glucose metabolism: implications and considerations for the assessment of glucose homeostasis in rodents

Greg M. Kowalski; Clinton R. Bruce

The incidence of insulin resistance and type 2 diabetes (T2D) is increasing at alarming rates. In the quest to understand the underlying causes of and to identify novel therapeutic targets to treat T2D, scientists have become increasingly reliant on the use of rodent models. Here, we provide a discussion on the regulation of rodent glucose metabolism, highlighting key differences and similarities that exist between rodents and humans. In addition, some of the issues and considerations associated with assessing glucose homeostasis and insulin action are outlined. We also discuss the role of the liver vs. skeletal muscle in regulating whole body glucose metabolism in rodents, emphasizing the importance of defective hepatic glucose metabolism in the development of impaired glucose tolerance, insulin resistance, and T2D.


Journal of Immunology | 2011

IL-10 Controls Cystatin C Synthesis and Blood Concentration in Response to Inflammation through Regulation of IFN Regulatory Factor 8 Expression

Yuekang Xu; Petra Schnorrer; Anna I Proietto; Greg M. Kowalski; Mark A. Febbraio; Hans Acha-Orbea; Ross A. Dickins; Jose A. Villadangos

Cystatin C (CstC) is a cysteine protease inhibitor of major clinical importance. Low concentration of serum CstC is linked to atherosclerosis. CstC can prevent formation of amyloid β associated with Alzheimer’s disease and can itself form toxic aggregates. CstC regulates NO secretion by macrophages and is a TGF-β antagonist. Finally, the serum concentration of CstC is an indicator of kidney function. Yet, little is known about the regulation of CstC expression in vivo. In this study, we demonstrate that the transcription factor IFN regulatory factor 8 (IRF-8) is critical for CstC expression in primary dendritic cells. Only those cells with IRF-8 bound to the CstC gene promoter expressed high levels of the inhibitor. Secretion of IL-10 in response to inflammatory stimuli downregulated IRF-8 expression and consequently CstC synthesis in vivo. Furthermore, the serum concentration of CstC decreased in an IL-10–dependent manner in mice treated with the TLR9 agonist CpG. CstC synthesis is therefore more tightly regulated than hitherto recognized. The mechanisms involved in this regulation might be targeted to alter CstC production, with potential therapeutic value. Our results also indicate that caution should be exerted when using the concentration of serum CstC as an indicator of kidney function in conditions in which inflammation may alter CstC production.


Biochemical and Biophysical Research Communications | 2015

Application of dynamic metabolomics to examine in vivo skeletal muscle glucose metabolism in the chronically high-fat fed mouse

Greg M. Kowalski; David P. De Souza; Micah L. Burch; Steven Hamley; Joachim Kloehn; Ahrathy Selathurai; Dedreia Tull; Sean O'Callaghan; Malcolm J. McConville; Clinton R. Bruce

RATIONALE Defects in muscle glucose metabolism are linked to type 2 diabetes. Mechanistic studies examining these defects rely on the use of high fat-fed rodent models and typically involve the determination of muscle glucose uptake under insulin-stimulated conditions. While insightful, they do not necessarily reflect the physiology of the postprandial state. In addition, most studies do not examine aspects of glucose metabolism beyond the uptake process. Here we present an approach to study rodent muscle glucose and intermediary metabolism under the dynamic and physiologically relevant setting of the oral glucose tolerance test (OGTT). METHODS AND RESULTS In vivo muscle glucose and intermediary metabolism was investigated following oral administration of [U-(13)C] glucose. Quadriceps muscles were collected 15 and 60 min after glucose administration and metabolite flux profiling was determined by measuring (13)C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates via gas chromatography-mass spectrometry. While no dietary effects were noted in the glycolytic pathway, muscle from mice fed a high fat diet (HFD) exhibited a reduction in labelling in TCA intermediates. Interestingly, this appeared to be independent of alterations in flux through pyruvate dehydrogenase. In addition, our findings suggest that TCA cycle anaplerosis is negligible in muscle during an OGTT. CONCLUSIONS Under the dynamic physiologically relevant conditions of the OGTT, skeletal muscle from HFD fed mice exhibits alterations in glucose metabolism at the level of the TCA cycle.


Scientific Reports | 2016

Reversing diet-induced metabolic dysregulation by diet switching leads to altered hepatic de novo lipogenesis and glycerolipid synthesis

Greg M. Kowalski; Steven Hamley; Ahrathy Selathurai; Joachim Kloehn; David P. De Souza; Sean O’Callaghan; Brunda Nijagal; Dedreia Tull; Malcolm J. McConville; Clinton R. Bruce

In humans, low-energy diets rapidly reduce hepatic fat and improve/normalise glycemic control. Due to difficulties in obtaining human liver, little is known about changes to the lipid species and pathway fluxes that occur under these conditions. Using a combination of stable isotope, and targeted metabolomic approaches we investigated the acute (7–9 days) hepatic effects of switching high-fat high-sucrose diet (HFD) fed obese mice back to a chow diet. Upon the switch, energy intake was reduced, resulting in reductions of fat mass and hepatic triacyl- and diacylglycerol. However, these parameters were still elevated compared to chow fed mice, thus representing an intermediate phenotype. Nonetheless, glucose intolerance and hyperinsulinemia were completely normalized. The diet reversal resulted in marked reductions in hepatic de novo lipogenesis when compared to the chow and HFD groups. Compared with HFD, glycerolipid synthesis was reduced in the reversal animals, however it remained elevated above that of chow controls, indicating that despite experiencing a net loss in lipid stores, the liver was still actively esterifying available fatty acids at rates higher than that in chow control mice. This effect likely promotes the re-esterification of excess free fatty acids released from the breakdown of adipose depots during the weight loss period.


Frontiers in Physiology | 2016

Overexpression of Striated Muscle Activator of Rho Signaling (STARS) Increases C2C12 Skeletal Muscle Cell Differentiation.

Marita A. Wallace; Paul A. Della Gatta; Bilal Ahmad Mir; Greg M. Kowalski; Joachim Kloehn; Malcom J. McConville; Aaron P. Russell; Séverine Lamon

Background: Skeletal muscle growth and regeneration depend on the activation of satellite cells, which leads to myocyte proliferation, differentiation and fusion with existing muscle fibers. Skeletal muscle cell proliferation and differentiation are tightly coordinated by a continuum of molecular signaling pathways. The striated muscle activator of Rho signaling (STARS) is an actin binding protein that regulates the transcription of genes involved in muscle cell growth, structure and function via the stimulation of actin polymerization and activation of serum-response factor (SRF) signaling. STARS mediates cell proliferation in smooth and cardiac muscle models; however, whether STARS overexpression enhances cell proliferation and differentiation has not been investigated in skeletal muscle cells. Results: We demonstrate for the first time that STARS overexpression enhances differentiation but not proliferation in C2C12 mouse skeletal muscle cells. Increased differentiation was associated with an increase in the gene levels of the myogenic differentiation markers Ckm, Ckmt2 and Myh4, the differentiation factor Igf2 and the myogenic regulatory factors (MRFs) Myf5 and Myf6. Exposing C2C12 cells to CCG-1423, a pharmacological inhibitor of SRF preventing the nuclear translocation of its co-factor MRTF-A, had no effect on myotube differentiation rate, suggesting that STARS regulates differentiation via a MRTF-A independent mechanism. Conclusion: These findings position STARS as an important regulator of skeletal muscle growth and regeneration.


Metabolites | 2016

Strategies for Extending Metabolomics Studies with Stable Isotope Labelling and Fluxomics

Anubhav Srivastava; Greg M. Kowalski; Damien L. Callahan; Peter J. Meikle; Darren J. Creek

This is a perspective from the peer session on stable isotope labelling and fluxomics at the Australian & New Zealand Metabolomics Conference (ANZMET) held from 30 March to 1 April 2016 at La Trobe University, Melbourne, Australia. This report summarizes the key points raised in the peer session which focused on the advantages of using stable isotopes in modern metabolomics and the challenges in conducting flux analyses. The session highlighted the utility of stable isotope labelling in generating reference standards for metabolite identification, absolute quantification, and in the measurement of the dynamic activity of metabolic pathways. The advantages and disadvantages of different approaches of fluxomics analyses including flux balance analysis, metabolic flux analysis and kinetic flux profiling were also discussed along with the use of stable isotope labelling in in vivo dynamic metabolomics. A number of crucial technical considerations for designing experiments and analyzing data with stable isotope labelling were discussed which included replication, instrumentation, methods of labelling, tracer dilution and data analysis. This report reflects the current viewpoint on the use of stable isotope labelling in metabolomics experiments, identifying it as a great tool with the potential to improve biological interpretation of metabolomics data in a number of ways.


Metabolites | 2016

Analysis of Mammalian Cell Proliferation and Macromolecule Synthesis Using Deuterated Water and Gas Chromatography-Mass Spectrometry

Victoria C. Foletta; Michelle Palmieri; Joachim Kloehn; Shaun Mason; Stephen F Previs; Malcolm J. McConville; Oliver M. Sieber; Clinton R. Bruce; Greg M. Kowalski

Deuterated water (2H2O), a stable isotopic tracer, provides a convenient and reliable way to label multiple cellular biomass components (macromolecules), thus permitting the calculation of their synthesis rates. Here, we have combined 2H2O labelling, GC-MS analysis and a novel cell fractionation method to extract multiple biomass components (DNA, protein and lipids) from the one biological sample, thus permitting the simultaneous measurement of DNA (cell proliferation), protein and lipid synthesis rates. We have used this approach to characterize the turnover rates and metabolism of a panel of mammalian cells in vitro (muscle C2C12 and colon cancer cell lines). Our data show that in actively-proliferating cells, biomass synthesis rates are strongly linked to the rate of cell division. Furthermore, in both proliferating and non-proliferating cells, it is the lipid pool that undergoes the most rapid turnover when compared to DNA and protein. Finally, our data in human colon cancer cell lines reveal a marked heterogeneity in the reliance on the de novo lipogenic pathway, with the cells being dependent on both ‘self-made’ and exogenously-derived fatty acid.


The FASEB Journal | 2017

Lysine post-translational modification of glyceraldehyde-3-phosphate dehydrogenase regulates hepatic and systemic metabolism.

Simon T. Bond; Kirsten F. Howlett; Greg M. Kowalski; Shaun Mason; Timothy Connor; Adrian Cooper; Victor A. Streltsov; Clinton R. Bruce; Ken Walder; Sean L. McGee

Reciprocal regulation of hepatic glycolysis and gluconeogenesis contributes to systemic metabolic homeostasis. Recent evidence from lower order organisms has found that reversible post‐translational modification of glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH), particularly acetylation, contributes to the reciprocal regulation of glycolysis/gluconeogenesis. However, whether this occurs in mammalian hepatocytes in vitro or in vivo is unknown. Several proteomics studies have identified 4 lysine residues in critical regions of mammalian GAPDH that are altered by multiple post‐translational modifications. In FAO hepatoma cells, mutation of all 4 lysine residues (4K‐R GAPDH) to mimic their unmodified state reduced GAPDH glycolytic activity and glycolytic flux and increased gluconeogenic GAPDH activity and glucose production. Hepatic expression of 4K‐R GAPDH in mice increased GAPDH gluconeogenic activity and the contribution of gluconeogenesis to endogenous glucose production in the unfed state. Consistent with the increased reliance on the energy‐consuming gluconeogenic pathway, plasma free fatty acids and ketones were elevated in mice expressing 4K‐R GAPDH, suggesting enhanced lipolysis and hepatic fatty acid oxidation. In normal mice, food withholding and refeeding, as well as hormonal regulators of reciprocal glycolysis/gluconeogenesis, such as insulin, glucagon, and norepinephrine, had no effect on global GAPDH acetylation. However, GAPDH acetylation was reduced in obese and type 2 diabetic db/db mice. These findings show that post‐translational modification of GAPDH lysine residues regulates hepatic and systemic metabolism, revealing an unappreciated role for hepatic GAPDH in substrate selection and utilization.—Bond, S. T., Howlett, K. F., Kowalski, G. M., Mason, S., Connor, T., Cooper, A., Streltsov, V., Bruce, C. R., Walder, K. R., McGee, S. L. Lysine post‐translational modification of glyceraldehyde‐3‐phosphate dehydrogenase regulates hepatic and systemic metabolism. FASEB J. 31, 2592–2602 (2017). www.fasebj.org

Collaboration


Dive into the Greg M. Kowalski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dedreia Tull

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Mark A. Febbraio

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter J. Meikle

Baker IDI Heart and Diabetes Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge