Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregg J. Suaning is active.

Publication


Featured researches published by Gregg J. Suaning.


IEEE Transactions on Biomedical Engineering | 2001

CMOS neurostimulation ASIC with 100 channels, scaleable output, and bidirectional radio-frequency telemetry

Gregg J. Suaning; Nigel H. Lovell

100-channel neurostimulation circuit comprising a complementary metal oxide semiconductor (CMOS), application-specific integrated circuit (ASIC) has been designed, constructed and tested. The ASIC forms a significant milestone and an integral component of a 100-electrode neurostimulation system being developed by the authors. The system comprises an externally worn transmitter and a body implantable stimulator. The purpose of the system is to communicate both data and power across tissue via radio-frequency (RF) telemetry such that externally programmable, constant current, charge balanced, biphasic stimuli may be delivered to neural tissue at 100 unique sites. An intrinsic reverse telemetry feature of the ASIC has been designed such that information pertaining to the device function, reconstruction of the stimulation voltage waveform, and the measurement of impedance may be obtained through noninvasive means. To compensate for the paucity of data pertaining to the stimulation thresholds necessary in evoking a physiological response, the ASIC has been designed with scaleable current output. The ASIC has been designed primarily as a treatment of degenerative disorders of the retina whereby the 100 channels are to be utilized in the delivery of a pattern of stimuli of varying intensity and or duty cycle to the surviving neural tissue of the retina. However, it is conceivable that other fields of neurostimulation such as cochlear prosthetics and functional electronic stimulation may benefit from the employment of the system.


Vision Research | 2009

Focal activation of the feline retina via a suprachoroidal electrode array

Yan T. Wong; Spencer C. Chen; Jongmo Seo; John W. Morley; Nigel H. Lovell; Gregg J. Suaning

This paper presents the results of the first investigations into the use of bipolar electrical stimulation of the retina with a suprachoroidal vision prosthesis, and the effects of different electrode configurations on localization of responses on the primary visual cortex. Cats were implanted with electrodes in the suprachoroidal space, and electrically evoked potentials were recorded on the visual cortex. Responses were elicited to bipolar and monopolar stimuli, with each stimulating electrode coupled with either six-return electrodes, two-return electrodes, or a single-return electrode. The average charge threshold to elicit a response with bipolar stimulation and six-return electrodes was 76.47+/-8.76 nC. Bipolar stimulation using six-return electrodes evoked responses half the magnitude of those elicited with a single or two-return electrodes. Monopolar stimulation evoked a greater magnitude, and area of cortical activation than bipolar stimulation. This study showed that suprachoroidal, bipolar stimulation can elicit localized activity in the primary visual cortex, with the extent of localization and magnitude of response dependent on the electrode configuration.


Journal of Neurophysiology | 2009

Direct activation and temporal response properties of rabbit retinal ganglion cells following subretinal stimulation.

David Tsai; John W. Morley; Gregg J. Suaning; Nigel H. Lovell

In the last decade several groups have been developing vision prostheses to restore visual perception to the profoundly blind. Despite some promising results from human trials, further understanding of the neural mechanisms involved is crucial for improving the efficacy of these devices. One of the techniques involves placing stimulating electrodes in the subretinal space between the photoreceptor layer and the pigment epithelium to evoke neural responses in the degenerative retina. This study used cell-attached and whole cell current-clamp recordings to investigate the responses of rabbit retinal ganglion cells (RGCs) following subretinal stimulation with 25-mum-diameter electrodes. We found that direct RGC responses with short latency (</=2 ms using 0.1-ms pulses) could be reliably elicited. The thresholds for these responses were reported for on, off, and on-off RGCs over pulse widths 0.1-5.0 ms. During repetitive stimulation these direct activation responses were more readily elicited than responses arising from stimulation of the retinal network. The temporal spiking characteristics of RGCs were characterized as a function of stimulus configurations. We found that the response profiles could be generalized into four classes with distinctive properties. Our results suggest that for subretinal vision prostheses short pulses are preferable for efficacy and safety considerations, and that direct activation of RGCs will be necessary for reliable activation during high-frequency stimulation.


Journal of Neural Engineering | 2010

Evaluation of stimulus parameters and electrode geometry for an effective suprachoroidal retinal prosthesis

Mohit N. Shivdasani; Chi D. Luu; Rosemary Cicione; James B. Fallon; Penny J Allen; James Leuenberger; Gregg J. Suaning; Nigel H. Lovell; Robert K. Shepherd; Chris E. Williams

Several approaches have been proposed for placement of retinal prostheses: epiretinal, subretinal and suprachoroidal. We aimed to systematically evaluate the effectiveness of varying a range of stimulus parameters and electrode geometry for a suprachoroidal electrode array, using cortical evoked responses to monopolar electrical stimulation in cats. Our results indicate that charge thresholds were not dependent on electrode size, pulse widths or position of the return electrode tested, but were dependent on the number of sites stimulated in parallel. Further, we found that the combination of monopolar stimulation with large diameter electrodes, wide pulse widths and parallel stimulation minimized the voltage requirements for stimulation. These results provide useful insights for the design specifications of a low voltage suprachoroidal stimulator.


Journal of Neural Engineering | 2013

Performance of conducting polymer electrodes for stimulating neuroprosthetics

Rylie A. Green; Paul B. Matteucci; Rachelle T. Hassarati; B Giraud; Christopher W. D. Dodds; Spencer C. Chen; Phillip Byrnes-Preston; Gregg J. Suaning; Nigel H. Lovell

OBJECTIVE Recent interest in the use of conducting polymers (CPs) for neural stimulation electrodes has been growing; however, concerns remain regarding the stability of coatings under stimulation conditions. These studies examine the factors of the CP and implant environment that affect coating stability. The CP poly(ethylene dioxythiophene) (PEDOT) is examined in comparison to platinum (Pt), to demonstrate the potential performance of these coatings in neuroprosthetic applications. APPROACH PEDOT is coated on Pt microelectrode arrays and assessed in vitro for charge injection limit and long-term stability under stimulation in biologically relevant electrolytes. Physical and electrical stability of coatings following ethylene oxide (ETO) sterilization is established and efficacy of PEDOT as a visual prosthesis bioelectrode is assessed in the feline model. MAIN RESULTS It was demonstrated that PEDOT reduced the potential excursion at a Pt electrode interface by 72% in biologically relevant solutions. The charge injection limit of PEDOT for material stability was found to be on average 30× larger than Pt when tested in physiological saline and 20× larger than Pt when tested in protein supplemented media. Additionally stability of the coating was confirmed electrically and morphologically following ETO processing. It was demonstrated that PEDOT-coated electrodes had lower potential excursions in vivo and electrically evoked potentials (EEPs) could be detected within the visual cortex. SIGNIFICANCE These studies demonstrate that PEDOT can be produced as a stable electrode coating which can be sterilized and perform effectively and safely in neuroprosthetic applications. Furthermore these findings address the necessity for characterizing in vitro properties of electrodes in biologically relevant milieu which mimic the in vivo environment more closely.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2007

Retinal Neurostimulator for a Multifocal Vision Prosthesis

Yan T. Wong; N. Dommel; Philip Preston; Luke E. Hallum; Torsten Lehmann; Nigel H. Lovell; Gregg J. Suaning

A neurostimulator application-specific integrated circuit (ASIC) with scalable circuitry that can stimulate 14 channels, has been developed for an epi-retinal vision prosthesis. This ASIC was designed to allow seven identical units to be connected to control up to 98 channels, with the ability to stimulate 14 electrodes simultaneously. The neurostimulator forms part of a vision prosthesis, designed to restore vision to patients who have lost their sight due to retinal diseases such as retinitis pigmentosa and macular degeneration. For charge balance, the neurostimulator was designed to stimulate with current sources and sinks operating together, and with the ability to drive a hexagonal mosaic of electrodes to reduce the electrical crosstalk that occurs when multiple bipolar stimulation sites are active simultaneously. A hexagonal mosaic of electrodes surrounds each stimulation site and has been shown to effectively isolate each site, increasing the ability to inject localized independent charge into multiple regions simultaneously.


Expert Review of Medical Devices | 2012

Bionic vision: system architectures: a review.

Thomas Guenther; Nigel H. Lovell; Gregg J. Suaning

The concept of an electronic visual prosthesis has been investigated since the early 20th century. While the first generation of long-term implantable devices were defined by the turn of the millennium, the greatest progress has been achieved in the past decade. This review describes the current state of the art of visual prosthesis investigated by more than two dozen active groups in this field of research. The focus is on technological solutions in regard to long-term safety of materials, electrode–tissue interfaces and encapsulation technologies. Furthermore, we critically assess the maximum number of stimulating electrodes each technological approach is likely to provide.


Journal of Neural Engineering | 2011

Electric crosstalk impairs spatial resolution of multi-electrode arrays in retinal implants

Robert Wilke; G Khalili Moghadam; Nigel H. Lovell; Gregg J. Suaning; Socrates Dokos

Active multi-electrode arrays are used in vision prostheses, including optic nerve cuffs and cortical and retinal implants for stimulation of neural tissue. For retinal implants, arrays with up to 1500 electrodes are used in clinical trials. The ability to convey information with high spatial resolution is critical for these applications. To assess the extent to which spatial resolution is impaired by electric crosstalk, finite-element simulation of electric field distribution in a simplified passive tissue model of the retina is performed. The effects of electrode size, electrode spacing, distance to target cells, and electrode return configuration (monopolar, tripolar, hexagonal) on spatial resolution is investigated in the form of a mathematical model of electric field distribution. Results show that spatial resolution is impaired with increased distance from the electrode array to the target cells. This effect can be partly compensated by non-monopolar electrode configurations and larger electrode diameters, albeit at the expense of lower pixel densities due to larger covering areas by each stimulation electrode. In applications where multi-electrode arrays can be brought into close proximity to target cells, as presumably with epiretinal implants, smaller electrodes in monopolar configuration can provide the highest spatial resolution. However, if the implantation site is further from the target cells, as is the case in suprachoroidal approaches, hexagonally guarded electrode return configurations can convey higher spatial resolution.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2005

A bidomain model of epiretinal stimulation

Socrates Dokos; Gregg J. Suaning; Nigel H. Lovell

A computational bidomain model of epiretinal stimulation is presented, consisting of a continuum description of active retinal tissue in contact with bulk vitreous fluid. Results from two-electrode and four-electrode bipolar stimulation suggest that a biphasic cathodic-anodic stimulus sequence is effective in providing targeted focal activation of retinal tissue. Undesired secondary activations beneath each electrode return may be eliminated by using multiple returns for each stimulus electrode.


Journal of Neural Engineering | 2013

Attaining higher resolution visual prosthetics: a review of the factors and limitations

Calvin D. Eiber; Nigel H. Lovell; Gregg J. Suaning

Visual prosthetics is an expanding subfield of functional electrical stimulation which has gained increased interest recently in light of new advances in treatments and technology. These treatments and technology represent a major improvement over prior art, but are still subject to a host of limitations which are dependent on the manner in which one approaches the topic of visual prosthetics. These limitations pose new research challenges whose solutions are directly applicable to the well-being of blind individuals everywhere. In this review, we will outline and critically compare major current approaches to visual prosthetics, and in particular retinal prosthetics. Then, we will engage in an in-depth discussion of the limitations imposed by current technology, physics, and the underlying biology of the retina to highlight several of the challenges currently facing researchers.

Collaboration


Dive into the Gregg J. Suaning's collaboration.

Top Co-Authors

Avatar

Nigel H. Lovell

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Socrates Dokos

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

David Tsai

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Spencer C. Chen

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul B. Matteucci

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Tianruo Guo

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Luke E. Hallum

Center for Neural Science

View shared research outputs
Top Co-Authors

Avatar

Torsten Lehmann

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge