Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Grégoire Ruffenach is active.

Publication


Featured researches published by Grégoire Ruffenach.


Circulation | 2015

Downregulation of MicroRNA-126 Contributes to the Failing Right Ventricle in Pulmonary Arterial Hypertension.

François Potus; Grégoire Ruffenach; Abdellaziz Dahou; Christophe Thébault; Sandra Breuils-Bonnet; Eve Tremblay; Valérie Nadeau; Renée Paradis; Colin Graydon; Ryan Wong; Ian Johnson; Roxane Paulin; Annie C. Lajoie; Jean Perron; Eric Charbonneau; Philippe Joubert; Philippe Pibarot; Evangelos D. Michelakis; Steeve Provencher; Sébastien Bonnet

Background— Right ventricular (RV) failure is the most important factor of both morbidity and mortality in pulmonary arterial hypertension (PAH). However, the underlying mechanisms resulting in the failed RV in PAH remain unknown. There is growing evidence that angiogenesis and microRNAs are involved in PAH-associated RV failure. We hypothesized that microRNA-126 (miR-126) downregulation decreases microvessel density and promotes the transition from a compensated to a decompensated RV in PAH. Methods and Results— We studied RV free wall tissues from humans with normal RV (n=17), those with compensated RV hypertrophy (n=8), and patients with PAH with decompensated RV failure (n=14). Compared with RV tissues from patients with compensated RV hypertrophy, patients with decompensated RV failure had decreased miR-126 expression (quantitative reverse transcription–polymerase chain reaction; P<0.01) and capillary density (CD31+ immunofluorescence; P<0.001), whereas left ventricular tissues were not affected. miR-126 downregulation was associated with increased Sprouty-related EVH1 domain-containing protein 1 (SPRED-1), leading to decreased activation of RAF (phosphorylated RAF/RAF) and mitogen-activated protein kinase (MAPK); (phosphorylated MAPK/MAPK), thus inhibiting the vascular endothelial growth factor pathway. In vitro, Matrigel assay showed that miR-126 upregulation increased angiogenesis of primary cultured endothelial cells from patients with decompensated RV failure. Furthermore, in vivo miR-126 upregulation (mimic intravenous injection) improved cardiac vascular density and function of monocrotaline-induced PAH animals. Conclusions— RV failure in PAH is associated with a specific molecular signature within the RV, contributing to a decrease in RV vascular density and promoting the progression to RV failure. More importantly, miR-126 upregulation in the RV improves microvessel density and RV function in experimental PAH.


Canadian Journal of Cardiology | 2015

Adaptation and Remodelling of the Pulmonary Circulation in Pulmonary Hypertension

Mylène Vaillancourt; Grégoire Ruffenach; Jolyane Meloche; Sébastien Bonnet

Pulmonary arterial hypertension (PAH) is characterized by remodelling of pulmonary arteries caused by a proliferation/apoptosis imbalance within the vascular wall. This pathological phenotype seems to be triggered by different environmental stress and injury events such as increased inflammation, DNA damage, and epigenetic deregulation. It appears that one of the first hit to occur is endothelial cells (ECs) injury and apoptosis, which leads to paracrine signalling to other ECs, pulmonary artery smooth muscle cells (PASMCs), and fibroblasts. These signals promote a phenotypic change of surviving ECs by disturbing different signalling pathways leading to sustained vasoconstriction, proproliferative and antiapoptotic phenotype, deregulated angiogenesis, and formation of plexiform lesions. EC signalling also recruits proinflammatory cells, leading to pulmonary infiltration of lymphocytes, macrophages, and dendritic cells, sustaining the inflammatory environment and autoimmune response. Finally, EC signalling promotes proliferative and antiapoptotic PAH-PASMC phenotypes, which acquire migratory capacities, resulting in increased vascular wall thickness and muscularization of small pulmonary arterioles. Adaptation and remodelling of pulmonary circulation also involves epigenetic components, such as microRNA deregulation, DNA methylation, and histone modification. This review will focus on the different cellular and epigenetic aspects including EC stress response, molecular mechanisms contributing to PAH-PASMC and PAEC proliferation and resistance to apoptosis, as well as epigenetic control involved in adaptation and remodelling of the pulmonary circulation in PAH.


Circulation | 2016

Potassium-Channel Subfamily K-Member 3 (KCNK3) Contributes to the Development of Pulmonary Arterial Hypertension

Fabrice Antigny; Aurélie Hautefort; Jolyane Meloche; Milia Belacel-Ouari; Boris Manoury; Catherine Rucker-Martin; Christine Péchoux; François Potus; Valérie Nadeau; Eve Tremblay; Grégoire Ruffenach; Alice Bourgeois; Peter Dorfmüller; Sandra Breuils-Bonnet; Elie Fadel; Benoit Ranchoux; Philippe Jourdon; Barbara Girerd; David Montani; Steeve Provencher; Sébastien Bonnet; Gérald Simonneau; Marc Humbert; Frédéric Perros

Background— Mutations in the KCNK3 gene have been identified in some patients suffering from heritable pulmonary arterial hypertension (PAH). KCNK3 encodes an outward rectifier K+ channel, and each identified mutation leads to a loss of function. However, the pathophysiological role of potassium channel subfamily K member 3 (KCNK3) in PAH is unclear. We hypothesized that loss of function of KCNK3 is a hallmark of idiopathic and heritable PAH and contributes to dysfunction of pulmonary artery smooth muscle cells and pulmonary artery endothelial cells, leading to pulmonary artery remodeling: consequently, restoring KCNK3 function could alleviate experimental pulmonary hypertension (PH). Methods and Results— We demonstrated that KCNK3 expression and function were reduced in human PAH and in monocrotaline-induced PH in rats. Using a patch-clamp technique in freshly isolated (not cultured) pulmonary artery smooth muscle cells and pulmonary artery endothelial cells, we found that KCNK3 current decreased progressively during the development of monocrotaline-induced PH and correlated with plasma-membrane depolarization. We demonstrated that KCNK3 modulated pulmonary arterial tone. Long-term inhibition of KCNK3 in rats induced distal neomuscularization and early hemodynamic signs of PH, which were related to exaggerated proliferation of pulmonary artery endothelial cells, pulmonary artery smooth muscle cell, adventitial fibroblasts, and pulmonary and systemic inflammation. Lastly, in vivo pharmacological activation of KCNK3 significantly reversed monocrotaline-induced PH in rats. Conclusions— In PAH and experimental PH, KCNK3 expression and activity are strongly reduced in pulmonary artery smooth muscle cells and endothelial cells. KCNK3 inhibition promoted increased proliferation, vasoconstriction, and inflammation. In vivo pharmacological activation of KCNK3 alleviated monocrotaline-induced PH, thus demonstrating that loss of KCNK3 is a key event in PAH pathogenesis and thus could be therapeutically targeted.


Circulation Research | 2015

Bromodomain Containing Protein-4: The Epigenetic Origin of Pulmonary Arterial Hypertension

Jolyane Meloche; François Potus; Mylène Vaillancourt; Alice Bourgeois; Ian H Johnson; Laure Deschamps; Sophie Chabot; Grégoire Ruffenach; Sarah Henry; Sandra Breuils-Bonnet; Eve Tremblay; Valérie Nadeau; Caroline Lambert; Renée Paradis; Steeve Provencher; Sébastien Bonnet

Rationale: Pulmonary arterial hypertension (PAH) is a vasculopathy characterized by enhanced pulmonary artery (PA) smooth muscle cell (PASMC) proliferation and suppressed apoptosis. Decreased expression of microRNA-204 has been associated to this phenotype. By a still elusive mechanism, microRNA-204 downregulation promotes the expression of oncogenes, including nuclear factor of activated T cells, B-cell lymphoma 2, and Survivin. In cancer, increased expression of the epigenetic reader bromodomain-containing protein 4 (BRD4) sustains cell survival and proliferation. Interestingly, BRD4 is a predicted target of microRNA-204 and has binding sites on the nuclear factor of activated T cells promoter region. Objective: To investigate the role of BRD4 in PAH pathogenesis. Methods and Results: BRD4 is upregulated in lungs, distal PAs, and PASMCs of patients with PAH compared with controls. With mechanistic in vitro experiments, we demonstrated that BRD4 expression in PAH is microRNA-204 dependent. We further studied the molecular downstream targets of BRD4 by inhibiting its activity in PAH–PASMCs using a clinically available inhibitor JQ1. JQ1 treatment in PAH–PASMCs increased p21 expression, thus triggering cell cycle arrest. Furthermore, BRD4 inhibition, by JQ1 or siBRD4, decreased the expression of 3 major oncogenes, which are overexpressed in PAH: nuclear factor of activated T cells, B-cell lymphoma 2, and Survivin. Blocking this oncogenic signature led to decreased PAH-PASMC proliferation and increased apoptosis in a BRD4-dependent manner. Indeed, pharmacological JQ1 or molecular (siRNA) inhibition of BRD4 reversed this pathological phenotype in addition to restoring mitochondrial membrane potential and to increasing cells spare respiratory capacity. Moreover, BRD4 inhibition in vivo reversed established PAH in the Sugen/hypoxia rat model. Conclusions: BRD4 plays a key role in the pathological phenotype in PAH, which could offer new therapeutic perspectives for patients with PAH. # Novelty and Significance {#article-title-53}RATIONALE Pulmonary arterial hypertension (PAH) is a vasculopathy characterized by enhanced pulmonary artery (PA) smooth muscle cell (PASMC) proliferation and suppressed apoptosis. Decreased expression of microRNA-204 has been associated to this phenotype. By a still elusive mechanism, microRNA-204 downregulation promotes the expression of oncogenes, including nuclear factor of activated T cells, B-cell lymphoma 2, and Survivin. In cancer, increased expression of the epigenetic reader bromodomain-containing protein 4 (BRD4) sustains cell survival and proliferation. Interestingly, BRD4 is a predicted target of microRNA-204 and has binding sites on the nuclear factor of activated T cells promoter region. OBJECTIVE To investigate the role of BRD4 in PAH pathogenesis. METHODS AND RESULTS BRD4 is upregulated in lungs, distal PAs, and PASMCs of patients with PAH compared with controls. With mechanistic in vitro experiments, we demonstrated that BRD4 expression in PAH is microRNA-204 dependent. We further studied the molecular downstream targets of BRD4 by inhibiting its activity in PAH-PASMCs using a clinically available inhibitor JQ1. JQ1 treatment in PAH-PASMCs increased p21 expression, thus triggering cell cycle arrest. Furthermore, BRD4 inhibition, by JQ1 or siBRD4, decreased the expression of 3 major oncogenes, which are overexpressed in PAH: nuclear factor of activated T cells, B-cell lymphoma 2, and Survivin. Blocking this oncogenic signature led to decreased PAH-PASMC proliferation and increased apoptosis in a BRD4-dependent manner. Indeed, pharmacological JQ1 or molecular (siRNA) inhibition of BRD4 reversed this pathological phenotype in addition to restoring mitochondrial membrane potential and to increasing cells spare respiratory capacity. Moreover, BRD4 inhibition in vivo reversed established PAH in the Sugen/hypoxia rat model. CONCLUSIONS BRD4 plays a key role in the pathological phenotype in PAH, which could offer new therapeutic perspectives for patients with PAH.


Pulmonary circulation | 2018

Identity crisis in pulmonary arterial hypertension

Grégoire Ruffenach; Sébastien Bonnet; Sophie Rousseaux; Saadi Khochbin; Steeve Provencher; Frédéric Perros

Pulmonary arterial hypertension (PAH) shares many hallmarks with cancer. Cancer cells acquire their hallmarks by a pathological Darwinian evolution process built on the so-called cancer cell “identity crisis.” Here we demonstrate that PAH shares the most striking features of the cancer identity crisis: the ectopic expression of normally silent tissue-specific genes.


Circulation Research | 2015

Bromodomain-Containing Protein 4Novelty and Significance

Jolyane Meloche; François Potus; Mylène Vaillancourt; Alice Bourgeois; Ian Johnson; Laure Deschamps; Sophie Chabot; Grégoire Ruffenach; Sarah Henry; Sandra Breuils-Bonnet; Eve Tremblay; Valérie Nadeau; Caroline Lambert; Renée Paradis; Steeve Provencher; Sébastien Bonnet

Rationale: Pulmonary arterial hypertension (PAH) is a vasculopathy characterized by enhanced pulmonary artery (PA) smooth muscle cell (PASMC) proliferation and suppressed apoptosis. Decreased expression of microRNA-204 has been associated to this phenotype. By a still elusive mechanism, microRNA-204 downregulation promotes the expression of oncogenes, including nuclear factor of activated T cells, B-cell lymphoma 2, and Survivin. In cancer, increased expression of the epigenetic reader bromodomain-containing protein 4 (BRD4) sustains cell survival and proliferation. Interestingly, BRD4 is a predicted target of microRNA-204 and has binding sites on the nuclear factor of activated T cells promoter region. Objective: To investigate the role of BRD4 in PAH pathogenesis. Methods and Results: BRD4 is upregulated in lungs, distal PAs, and PASMCs of patients with PAH compared with controls. With mechanistic in vitro experiments, we demonstrated that BRD4 expression in PAH is microRNA-204 dependent. We further studied the molecular downstream targets of BRD4 by inhibiting its activity in PAH–PASMCs using a clinically available inhibitor JQ1. JQ1 treatment in PAH–PASMCs increased p21 expression, thus triggering cell cycle arrest. Furthermore, BRD4 inhibition, by JQ1 or siBRD4, decreased the expression of 3 major oncogenes, which are overexpressed in PAH: nuclear factor of activated T cells, B-cell lymphoma 2, and Survivin. Blocking this oncogenic signature led to decreased PAH-PASMC proliferation and increased apoptosis in a BRD4-dependent manner. Indeed, pharmacological JQ1 or molecular (siRNA) inhibition of BRD4 reversed this pathological phenotype in addition to restoring mitochondrial membrane potential and to increasing cells spare respiratory capacity. Moreover, BRD4 inhibition in vivo reversed established PAH in the Sugen/hypoxia rat model. Conclusions: BRD4 plays a key role in the pathological phenotype in PAH, which could offer new therapeutic perspectives for patients with PAH. # Novelty and Significance {#article-title-53}RATIONALE Pulmonary arterial hypertension (PAH) is a vasculopathy characterized by enhanced pulmonary artery (PA) smooth muscle cell (PASMC) proliferation and suppressed apoptosis. Decreased expression of microRNA-204 has been associated to this phenotype. By a still elusive mechanism, microRNA-204 downregulation promotes the expression of oncogenes, including nuclear factor of activated T cells, B-cell lymphoma 2, and Survivin. In cancer, increased expression of the epigenetic reader bromodomain-containing protein 4 (BRD4) sustains cell survival and proliferation. Interestingly, BRD4 is a predicted target of microRNA-204 and has binding sites on the nuclear factor of activated T cells promoter region. OBJECTIVE To investigate the role of BRD4 in PAH pathogenesis. METHODS AND RESULTS BRD4 is upregulated in lungs, distal PAs, and PASMCs of patients with PAH compared with controls. With mechanistic in vitro experiments, we demonstrated that BRD4 expression in PAH is microRNA-204 dependent. We further studied the molecular downstream targets of BRD4 by inhibiting its activity in PAH-PASMCs using a clinically available inhibitor JQ1. JQ1 treatment in PAH-PASMCs increased p21 expression, thus triggering cell cycle arrest. Furthermore, BRD4 inhibition, by JQ1 or siBRD4, decreased the expression of 3 major oncogenes, which are overexpressed in PAH: nuclear factor of activated T cells, B-cell lymphoma 2, and Survivin. Blocking this oncogenic signature led to decreased PAH-PASMC proliferation and increased apoptosis in a BRD4-dependent manner. Indeed, pharmacological JQ1 or molecular (siRNA) inhibition of BRD4 reversed this pathological phenotype in addition to restoring mitochondrial membrane potential and to increasing cells spare respiratory capacity. Moreover, BRD4 inhibition in vivo reversed established PAH in the Sugen/hypoxia rat model. CONCLUSIONS BRD4 plays a key role in the pathological phenotype in PAH, which could offer new therapeutic perspectives for patients with PAH.


Circulation Research | 2015

Bromodomain-Containing Protein 4

Jolyane Meloche; François Potus; Mylène Vaillancourt; Alice Bourgeois; Ian Johnson; Laure Deschamps; Sophie Chabot; Grégoire Ruffenach; Sarah Henry; Sandra Breuils-Bonnet; Eve Tremblay; Valérie Nadeau; Caroline Lambert; Renée Paradis; Steeve Provencher; Sébastien Bonnet

Rationale: Pulmonary arterial hypertension (PAH) is a vasculopathy characterized by enhanced pulmonary artery (PA) smooth muscle cell (PASMC) proliferation and suppressed apoptosis. Decreased expression of microRNA-204 has been associated to this phenotype. By a still elusive mechanism, microRNA-204 downregulation promotes the expression of oncogenes, including nuclear factor of activated T cells, B-cell lymphoma 2, and Survivin. In cancer, increased expression of the epigenetic reader bromodomain-containing protein 4 (BRD4) sustains cell survival and proliferation. Interestingly, BRD4 is a predicted target of microRNA-204 and has binding sites on the nuclear factor of activated T cells promoter region. Objective: To investigate the role of BRD4 in PAH pathogenesis. Methods and Results: BRD4 is upregulated in lungs, distal PAs, and PASMCs of patients with PAH compared with controls. With mechanistic in vitro experiments, we demonstrated that BRD4 expression in PAH is microRNA-204 dependent. We further studied the molecular downstream targets of BRD4 by inhibiting its activity in PAH–PASMCs using a clinically available inhibitor JQ1. JQ1 treatment in PAH–PASMCs increased p21 expression, thus triggering cell cycle arrest. Furthermore, BRD4 inhibition, by JQ1 or siBRD4, decreased the expression of 3 major oncogenes, which are overexpressed in PAH: nuclear factor of activated T cells, B-cell lymphoma 2, and Survivin. Blocking this oncogenic signature led to decreased PAH-PASMC proliferation and increased apoptosis in a BRD4-dependent manner. Indeed, pharmacological JQ1 or molecular (siRNA) inhibition of BRD4 reversed this pathological phenotype in addition to restoring mitochondrial membrane potential and to increasing cells spare respiratory capacity. Moreover, BRD4 inhibition in vivo reversed established PAH in the Sugen/hypoxia rat model. Conclusions: BRD4 plays a key role in the pathological phenotype in PAH, which could offer new therapeutic perspectives for patients with PAH. # Novelty and Significance {#article-title-53}RATIONALE Pulmonary arterial hypertension (PAH) is a vasculopathy characterized by enhanced pulmonary artery (PA) smooth muscle cell (PASMC) proliferation and suppressed apoptosis. Decreased expression of microRNA-204 has been associated to this phenotype. By a still elusive mechanism, microRNA-204 downregulation promotes the expression of oncogenes, including nuclear factor of activated T cells, B-cell lymphoma 2, and Survivin. In cancer, increased expression of the epigenetic reader bromodomain-containing protein 4 (BRD4) sustains cell survival and proliferation. Interestingly, BRD4 is a predicted target of microRNA-204 and has binding sites on the nuclear factor of activated T cells promoter region. OBJECTIVE To investigate the role of BRD4 in PAH pathogenesis. METHODS AND RESULTS BRD4 is upregulated in lungs, distal PAs, and PASMCs of patients with PAH compared with controls. With mechanistic in vitro experiments, we demonstrated that BRD4 expression in PAH is microRNA-204 dependent. We further studied the molecular downstream targets of BRD4 by inhibiting its activity in PAH-PASMCs using a clinically available inhibitor JQ1. JQ1 treatment in PAH-PASMCs increased p21 expression, thus triggering cell cycle arrest. Furthermore, BRD4 inhibition, by JQ1 or siBRD4, decreased the expression of 3 major oncogenes, which are overexpressed in PAH: nuclear factor of activated T cells, B-cell lymphoma 2, and Survivin. Blocking this oncogenic signature led to decreased PAH-PASMC proliferation and increased apoptosis in a BRD4-dependent manner. Indeed, pharmacological JQ1 or molecular (siRNA) inhibition of BRD4 reversed this pathological phenotype in addition to restoring mitochondrial membrane potential and to increasing cells spare respiratory capacity. Moreover, BRD4 inhibition in vivo reversed established PAH in the Sugen/hypoxia rat model. CONCLUSIONS BRD4 plays a key role in the pathological phenotype in PAH, which could offer new therapeutic perspectives for patients with PAH.


Circulation Research | 2015

Bromodomain-Containing Protein 4Novelty and Significance: The Epigenetic Origin of Pulmonary Arterial Hypertension

Jolyane Meloche; François Potus; Mylène Vaillancourt; Alice Bourgeois; Ian Johnson; Laure Deschamps; Sophie Chabot; Grégoire Ruffenach; Sarah Henry; Sandra Breuils-Bonnet; Eve Tremblay; Valérie Nadeau; Caroline Lambert; Renée Paradis; Steeve Provencher; Sébastien Bonnet

Rationale: Pulmonary arterial hypertension (PAH) is a vasculopathy characterized by enhanced pulmonary artery (PA) smooth muscle cell (PASMC) proliferation and suppressed apoptosis. Decreased expression of microRNA-204 has been associated to this phenotype. By a still elusive mechanism, microRNA-204 downregulation promotes the expression of oncogenes, including nuclear factor of activated T cells, B-cell lymphoma 2, and Survivin. In cancer, increased expression of the epigenetic reader bromodomain-containing protein 4 (BRD4) sustains cell survival and proliferation. Interestingly, BRD4 is a predicted target of microRNA-204 and has binding sites on the nuclear factor of activated T cells promoter region. Objective: To investigate the role of BRD4 in PAH pathogenesis. Methods and Results: BRD4 is upregulated in lungs, distal PAs, and PASMCs of patients with PAH compared with controls. With mechanistic in vitro experiments, we demonstrated that BRD4 expression in PAH is microRNA-204 dependent. We further studied the molecular downstream targets of BRD4 by inhibiting its activity in PAH–PASMCs using a clinically available inhibitor JQ1. JQ1 treatment in PAH–PASMCs increased p21 expression, thus triggering cell cycle arrest. Furthermore, BRD4 inhibition, by JQ1 or siBRD4, decreased the expression of 3 major oncogenes, which are overexpressed in PAH: nuclear factor of activated T cells, B-cell lymphoma 2, and Survivin. Blocking this oncogenic signature led to decreased PAH-PASMC proliferation and increased apoptosis in a BRD4-dependent manner. Indeed, pharmacological JQ1 or molecular (siRNA) inhibition of BRD4 reversed this pathological phenotype in addition to restoring mitochondrial membrane potential and to increasing cells spare respiratory capacity. Moreover, BRD4 inhibition in vivo reversed established PAH in the Sugen/hypoxia rat model. Conclusions: BRD4 plays a key role in the pathological phenotype in PAH, which could offer new therapeutic perspectives for patients with PAH. # Novelty and Significance {#article-title-53}RATIONALE Pulmonary arterial hypertension (PAH) is a vasculopathy characterized by enhanced pulmonary artery (PA) smooth muscle cell (PASMC) proliferation and suppressed apoptosis. Decreased expression of microRNA-204 has been associated to this phenotype. By a still elusive mechanism, microRNA-204 downregulation promotes the expression of oncogenes, including nuclear factor of activated T cells, B-cell lymphoma 2, and Survivin. In cancer, increased expression of the epigenetic reader bromodomain-containing protein 4 (BRD4) sustains cell survival and proliferation. Interestingly, BRD4 is a predicted target of microRNA-204 and has binding sites on the nuclear factor of activated T cells promoter region. OBJECTIVE To investigate the role of BRD4 in PAH pathogenesis. METHODS AND RESULTS BRD4 is upregulated in lungs, distal PAs, and PASMCs of patients with PAH compared with controls. With mechanistic in vitro experiments, we demonstrated that BRD4 expression in PAH is microRNA-204 dependent. We further studied the molecular downstream targets of BRD4 by inhibiting its activity in PAH-PASMCs using a clinically available inhibitor JQ1. JQ1 treatment in PAH-PASMCs increased p21 expression, thus triggering cell cycle arrest. Furthermore, BRD4 inhibition, by JQ1 or siBRD4, decreased the expression of 3 major oncogenes, which are overexpressed in PAH: nuclear factor of activated T cells, B-cell lymphoma 2, and Survivin. Blocking this oncogenic signature led to decreased PAH-PASMC proliferation and increased apoptosis in a BRD4-dependent manner. Indeed, pharmacological JQ1 or molecular (siRNA) inhibition of BRD4 reversed this pathological phenotype in addition to restoring mitochondrial membrane potential and to increasing cells spare respiratory capacity. Moreover, BRD4 inhibition in vivo reversed established PAH in the Sugen/hypoxia rat model. CONCLUSIONS BRD4 plays a key role in the pathological phenotype in PAH, which could offer new therapeutic perspectives for patients with PAH.


American Journal of Respiratory and Critical Care Medicine | 2016

Role for Runt-related Transcription Factor 2 in Proliferative and Calcified Vascular Lesions in Pulmonary Arterial Hypertension

Grégoire Ruffenach; Sophie Chabot; Tanguay Vf; Audrey Courboulin; Olivier Boucherat; François Potus; Jolyane Meloche; Pflieger A; Sandra Breuils-Bonnet; Nadeau; Paradis R; Eve Tremblay; Barbara Girerd; Aurélie Hautefort; D. Montani; E Fadel; Peter Dorfmüller; Marc Humbert; Frédéric Perros; Roxane Paulin; Steeve Provencher; Sébastien Bonnet


The FASEB Journal | 2015

Emerging role of epigenetic in pulmonary arterial hypertension right ventricular failure

François Potus; Grégoire Ruffenach; Steeve Provencher; Sébastien Bonnet

Collaboration


Dive into the Grégoire Ruffenach's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge