Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valérie Nadeau is active.

Publication


Featured researches published by Valérie Nadeau.


Circulation | 2015

Downregulation of MicroRNA-126 Contributes to the Failing Right Ventricle in Pulmonary Arterial Hypertension.

François Potus; Grégoire Ruffenach; Abdellaziz Dahou; Christophe Thébault; Sandra Breuils-Bonnet; Eve Tremblay; Valérie Nadeau; Renée Paradis; Colin Graydon; Ryan Wong; Ian Johnson; Roxane Paulin; Annie C. Lajoie; Jean Perron; Eric Charbonneau; Philippe Joubert; Philippe Pibarot; Evangelos D. Michelakis; Steeve Provencher; Sébastien Bonnet

Background— Right ventricular (RV) failure is the most important factor of both morbidity and mortality in pulmonary arterial hypertension (PAH). However, the underlying mechanisms resulting in the failed RV in PAH remain unknown. There is growing evidence that angiogenesis and microRNAs are involved in PAH-associated RV failure. We hypothesized that microRNA-126 (miR-126) downregulation decreases microvessel density and promotes the transition from a compensated to a decompensated RV in PAH. Methods and Results— We studied RV free wall tissues from humans with normal RV (n=17), those with compensated RV hypertrophy (n=8), and patients with PAH with decompensated RV failure (n=14). Compared with RV tissues from patients with compensated RV hypertrophy, patients with decompensated RV failure had decreased miR-126 expression (quantitative reverse transcription–polymerase chain reaction; P<0.01) and capillary density (CD31+ immunofluorescence; P<0.001), whereas left ventricular tissues were not affected. miR-126 downregulation was associated with increased Sprouty-related EVH1 domain-containing protein 1 (SPRED-1), leading to decreased activation of RAF (phosphorylated RAF/RAF) and mitogen-activated protein kinase (MAPK); (phosphorylated MAPK/MAPK), thus inhibiting the vascular endothelial growth factor pathway. In vitro, Matrigel assay showed that miR-126 upregulation increased angiogenesis of primary cultured endothelial cells from patients with decompensated RV failure. Furthermore, in vivo miR-126 upregulation (mimic intravenous injection) improved cardiac vascular density and function of monocrotaline-induced PAH animals. Conclusions— RV failure in PAH is associated with a specific molecular signature within the RV, contributing to a decrease in RV vascular density and promoting the progression to RV failure. More importantly, miR-126 upregulation in the RV improves microvessel density and RV function in experimental PAH.


Circulation | 2016

Potassium-Channel Subfamily K-Member 3 (KCNK3) Contributes to the Development of Pulmonary Arterial Hypertension

Fabrice Antigny; Aurélie Hautefort; Jolyane Meloche; Milia Belacel-Ouari; Boris Manoury; Catherine Rucker-Martin; Christine Péchoux; François Potus; Valérie Nadeau; Eve Tremblay; Grégoire Ruffenach; Alice Bourgeois; Peter Dorfmüller; Sandra Breuils-Bonnet; Elie Fadel; Benoit Ranchoux; Philippe Jourdon; Barbara Girerd; David Montani; Steeve Provencher; Sébastien Bonnet; Gérald Simonneau; Marc Humbert; Frédéric Perros

Background— Mutations in the KCNK3 gene have been identified in some patients suffering from heritable pulmonary arterial hypertension (PAH). KCNK3 encodes an outward rectifier K+ channel, and each identified mutation leads to a loss of function. However, the pathophysiological role of potassium channel subfamily K member 3 (KCNK3) in PAH is unclear. We hypothesized that loss of function of KCNK3 is a hallmark of idiopathic and heritable PAH and contributes to dysfunction of pulmonary artery smooth muscle cells and pulmonary artery endothelial cells, leading to pulmonary artery remodeling: consequently, restoring KCNK3 function could alleviate experimental pulmonary hypertension (PH). Methods and Results— We demonstrated that KCNK3 expression and function were reduced in human PAH and in monocrotaline-induced PH in rats. Using a patch-clamp technique in freshly isolated (not cultured) pulmonary artery smooth muscle cells and pulmonary artery endothelial cells, we found that KCNK3 current decreased progressively during the development of monocrotaline-induced PH and correlated with plasma-membrane depolarization. We demonstrated that KCNK3 modulated pulmonary arterial tone. Long-term inhibition of KCNK3 in rats induced distal neomuscularization and early hemodynamic signs of PH, which were related to exaggerated proliferation of pulmonary artery endothelial cells, pulmonary artery smooth muscle cell, adventitial fibroblasts, and pulmonary and systemic inflammation. Lastly, in vivo pharmacological activation of KCNK3 significantly reversed monocrotaline-induced PH in rats. Conclusions— In PAH and experimental PH, KCNK3 expression and activity are strongly reduced in pulmonary artery smooth muscle cells and endothelial cells. KCNK3 inhibition promoted increased proliferation, vasoconstriction, and inflammation. In vivo pharmacological activation of KCNK3 alleviated monocrotaline-induced PH, thus demonstrating that loss of KCNK3 is a key event in PAH pathogenesis and thus could be therapeutically targeted.


Circulation Research | 2015

Bromodomain Containing Protein-4: The Epigenetic Origin of Pulmonary Arterial Hypertension

Jolyane Meloche; François Potus; Mylène Vaillancourt; Alice Bourgeois; Ian H Johnson; Laure Deschamps; Sophie Chabot; Grégoire Ruffenach; Sarah Henry; Sandra Breuils-Bonnet; Eve Tremblay; Valérie Nadeau; Caroline Lambert; Renée Paradis; Steeve Provencher; Sébastien Bonnet

Rationale: Pulmonary arterial hypertension (PAH) is a vasculopathy characterized by enhanced pulmonary artery (PA) smooth muscle cell (PASMC) proliferation and suppressed apoptosis. Decreased expression of microRNA-204 has been associated to this phenotype. By a still elusive mechanism, microRNA-204 downregulation promotes the expression of oncogenes, including nuclear factor of activated T cells, B-cell lymphoma 2, and Survivin. In cancer, increased expression of the epigenetic reader bromodomain-containing protein 4 (BRD4) sustains cell survival and proliferation. Interestingly, BRD4 is a predicted target of microRNA-204 and has binding sites on the nuclear factor of activated T cells promoter region. Objective: To investigate the role of BRD4 in PAH pathogenesis. Methods and Results: BRD4 is upregulated in lungs, distal PAs, and PASMCs of patients with PAH compared with controls. With mechanistic in vitro experiments, we demonstrated that BRD4 expression in PAH is microRNA-204 dependent. We further studied the molecular downstream targets of BRD4 by inhibiting its activity in PAH–PASMCs using a clinically available inhibitor JQ1. JQ1 treatment in PAH–PASMCs increased p21 expression, thus triggering cell cycle arrest. Furthermore, BRD4 inhibition, by JQ1 or siBRD4, decreased the expression of 3 major oncogenes, which are overexpressed in PAH: nuclear factor of activated T cells, B-cell lymphoma 2, and Survivin. Blocking this oncogenic signature led to decreased PAH-PASMC proliferation and increased apoptosis in a BRD4-dependent manner. Indeed, pharmacological JQ1 or molecular (siRNA) inhibition of BRD4 reversed this pathological phenotype in addition to restoring mitochondrial membrane potential and to increasing cells spare respiratory capacity. Moreover, BRD4 inhibition in vivo reversed established PAH in the Sugen/hypoxia rat model. Conclusions: BRD4 plays a key role in the pathological phenotype in PAH, which could offer new therapeutic perspectives for patients with PAH. # Novelty and Significance {#article-title-53}RATIONALE Pulmonary arterial hypertension (PAH) is a vasculopathy characterized by enhanced pulmonary artery (PA) smooth muscle cell (PASMC) proliferation and suppressed apoptosis. Decreased expression of microRNA-204 has been associated to this phenotype. By a still elusive mechanism, microRNA-204 downregulation promotes the expression of oncogenes, including nuclear factor of activated T cells, B-cell lymphoma 2, and Survivin. In cancer, increased expression of the epigenetic reader bromodomain-containing protein 4 (BRD4) sustains cell survival and proliferation. Interestingly, BRD4 is a predicted target of microRNA-204 and has binding sites on the nuclear factor of activated T cells promoter region. OBJECTIVE To investigate the role of BRD4 in PAH pathogenesis. METHODS AND RESULTS BRD4 is upregulated in lungs, distal PAs, and PASMCs of patients with PAH compared with controls. With mechanistic in vitro experiments, we demonstrated that BRD4 expression in PAH is microRNA-204 dependent. We further studied the molecular downstream targets of BRD4 by inhibiting its activity in PAH-PASMCs using a clinically available inhibitor JQ1. JQ1 treatment in PAH-PASMCs increased p21 expression, thus triggering cell cycle arrest. Furthermore, BRD4 inhibition, by JQ1 or siBRD4, decreased the expression of 3 major oncogenes, which are overexpressed in PAH: nuclear factor of activated T cells, B-cell lymphoma 2, and Survivin. Blocking this oncogenic signature led to decreased PAH-PASMC proliferation and increased apoptosis in a BRD4-dependent manner. Indeed, pharmacological JQ1 or molecular (siRNA) inhibition of BRD4 reversed this pathological phenotype in addition to restoring mitochondrial membrane potential and to increasing cells spare respiratory capacity. Moreover, BRD4 inhibition in vivo reversed established PAH in the Sugen/hypoxia rat model. CONCLUSIONS BRD4 plays a key role in the pathological phenotype in PAH, which could offer new therapeutic perspectives for patients with PAH.


Development | 2009

Map2k1 and Map2k2 genes contribute to the normal development of syncytiotrophoblasts during placentation

Valérie Nadeau; Stéphanie Guillemette; Louis-François Bélanger; Olivier Jacob; Sophie Roy; Jean Charron

The mammalian genome contains two ERK/MAP kinase kinase genes, Map2k1 and Map2k2, which encode dual-specificity kinases responsible for ERK/MAP kinase activation. In the mouse, loss of Map2k1 function causes embryonic lethality, whereas Map2k2 mutants survive with a normal lifespan, suggesting that Map2k1 masks the phenotype due to the Map2k2 mutation. To uncover the specific function of MAP2K2 and the threshold requirement of MAP2K proteins during embryo formation, we have successively ablated the Map2k gene functions. We report here that Map2k2 haploinsufficiency affects the normal development of placenta in the absence of one Map2k1 allele. Most Map2k1+/-Map2k2+/- embryos die during gestation because of placenta defects restricted to extra-embryonic tissues. The impaired viability of Map2k1+/-Map2k2+/- embryos can be rescued when the Map2k1 deletion is restricted to the embryonic tissues. The severity of the placenta phenotype is dependent on the number of Map2k mutant alleles, the deletion of the Map2k1 allele being more deleterious. Moreover, the deletion of one or both Map2k2 alleles in the context of one null Map2k1 allele leads to the formation of multinucleated trophoblast giant (MTG) cells. Genetic experiments indicate that these structures are derived from Gcm1-expressing syncytiotrophoblasts (SynT), which are affected in their ability to form the uniform SynT layer II lining the maternal sinuses. Thus, even though Map2k1 plays a predominant role, these results enlighten the function of Map2k2 in placenta development.


Development | 2014

Crucial requirement of ERK/MAPK signaling in respiratory tract development.

Olivier Boucherat; Valérie Nadeau; Félix-Antoine Bérubé-Simard; Jean Charron; Lucie Jeannotte

The mammalian genome contains two ERK/MAP kinase genes, Mek1 and Mek2, which encode dual-specificity kinases responsible for ERK/MAP kinase activation. In order to define the function of the ERK/MAPK pathway in the lung development in mice, we performed tissue-specific deletions of Mek1 function on a Mek2 null background. Inactivation of both Mek genes in mesenchyme resulted in several phenotypes, including giant omphalocele, kyphosis, pulmonary hypoplasia, defective tracheal cartilage and death at birth. The absence of tracheal cartilage rings establishes the crucial role of intracellular signaling molecules in tracheal chondrogenesis and provides a putative mouse model for tracheomalacia. In vitro, the loss of Mek function in lung mesenchyme did not interfere with lung growth and branching, suggesting that both the reduced intrathoracic space due to the dysmorphic rib cage and the omphalocele impaired lung development in vivo. Conversely, Mek mutation in the respiratory epithelium caused lung agenesis, a phenotype resulting from the direct impact of the ERK/MAPK pathway on cell proliferation and survival. No tracheal epithelial cell differentiation occurred and no SOX2-positive progenitor cells were detected in mutants, implying a role for the ERK/MAPK pathway in trachea progenitor cell maintenance and differentiation. Moreover, these anomalies were phenocopied when the Erk1 and Erk2 genes were mutated in airway epithelium. Thus, the ERK/MAPK pathway is required for the integration of mesenchymal and epithelial signals essential for the development of the entire respiratory tract.


Development | 2014

Essential role of the ERK/MAPK pathway in blood-placental barrier formation

Valérie Nadeau; Jean Charron

The mammalian genome contains two ERK/MAP kinase kinase genes, Map2k1 and Map2k2, which encode dual-specificity kinases responsible for ERK activation. Loss of Map2k1 function in mouse causes embryonic lethality due to placental defects, whereas Map2k2 mutants have a normal lifespan. The majority of Map2k1+/− Map2k2+/− embryos die during gestation from the underdevelopment of the placenta labyrinth, demonstrating that both kinases are involved in placenta formation. Map2k1+/− Map2k2+/− mutants show reduced vascularization of the labyrinth and defective formation of syncytiotrophoblast layer II (SynT-II) leading to the accumulation of multinucleated trophoblast giant cells (MTGs). To define the cell type-specific contribution of the ERK/MAPK pathway to placenta development, we performed deletions of Map2k1 function in different Map2k1 Map2k2 allelic backgrounds. Loss of MAP kinase kinase activity in pericytes or in allantois-derived tissues worsens the MTG phenotype. These results define the contribution of the ERK/MAPK pathway in specific embryonic and extraembryonic cell populations for normal placentation. Our data also indicate that MTGs could result from the aberrant fusion of SynT-I and -II. Using mouse genetics, we demonstrate that the normal development of SynT-I into a thin layer of multinucleated cells depends on the presence of SynT-II. Lastly, the combined mutations of Map2k1 and Map2k2 alter the expression of several genes involved in cell fate specification, cell fusion and cell polarity. Thus, appropriate ERK/MAPK signaling in defined cell types is required for the proper growth, differentiation and morphogenesis of the placenta.


Scientific Reports | 2017

HDAC6: A Novel Histone Deacetylase Implicated in Pulmonary Arterial Hypertension

Olivier Boucherat; Sophie Chabot; Roxane Paulin; Isabelle Trinh; Alice Bourgeois; François Potus; Marie-Claude Lampron; Caroline Lambert; Sandra Breuils-Bonnet; Valérie Nadeau; Renée Paradis; Elena A. Goncharova; Steeve Provencher; Sébastien Bonnet

Pulmonary arterial hypertension (PAH) is a vascular remodeling disease with limited therapeutic options. Although exposed to stressful conditions, pulmonary artery (PA) smooth muscle cells (PASMCs) exhibit a “cancer-like” pro-proliferative and anti-apoptotic phenotype. HDAC6 is a cytoplasmic histone deacetylase regulating multiple pro-survival mechanisms and overexpressed in response to stress in cancer cells. Due to the similarities between cancer and PAH, we hypothesized that HDAC6 expression is increased in PAH-PASMCs to face stress allowing them to survive and proliferate, thus contributing to vascular remodeling in PAH. We found that HDAC6 is significantly up-regulated in lungs, distal PAs, and isolated PASMCs from PAH patients and animal models. Inhibition of HDAC6 reduced PAH-PASMC proliferation and resistance to apoptosis in vitro sparing control cells. Mechanistically, we demonstrated that HDAC6 maintains Ku70 in a hypoacetylated state, blocking the translocation of Bax to mitochondria and preventing apoptosis. In vivo, pharmacological inhibition of HDAC6 improved established PAH in two experimental models and can be safely given in combination with currently approved PAH therapies. Moreover, Hdac6 deficient mice were partially protected against chronic hypoxia-induced pulmonary hypertension. Our study shows for the first time that HDAC6 is implicated in PAH development and represents a new promising target to improve PAH.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2017

Implication of Inflammation and Epigenetic Readers in Coronary Artery Remodeling in Patients With Pulmonary Arterial Hypertension

Jolyane Meloche; Marie-Claude Lampron; Valérie Nadeau; Mélanie Maltais; François Potus; Caroline Lambert; Eve Tremblay; Géraldine Vitry; Sandra Breuils-Bonnet; Olivier Boucherat; Eric Charbonneau; Steeve Provencher; Roxane Paulin; Sébastien Bonnet

Objective— Pulmonary arterial hypertension (PAH) is a vascular disease not restricted to the lungs. Many signaling pathways described in PAH are also of importance in other vascular remodeling diseases, such as coronary artery disease (CAD). Intriguingly, CAD is 4× more prevalent in PAH compared with the global population, suggesting a link between these 2 diseases. Both PAH and CAD are associated with sustained inflammation and smooth muscle cell proliferation/apoptosis imbalance and we demonstrated in PAH that this phenotype is, in part, because of the miR-223/DNA damage/Poly[ADP-ribose] polymerase 1/miR-204 axis activation and subsequent bromodomain protein 4 (BRD4) overexpression. Interestingly, BRD4 is also a trigger for calcification and remodeling processes, both of which are important in CAD. Thus, we hypothesize that BRD4 activation in PAH influences the development of CAD. Approach and Results— PAH was associated with significant remodeling of the coronary arteries in both human and experimental models of the disease. As observed in PAH distal pulmonary arteries, coronary arteries of patients with PAH also exhibited increased DNA damage, inflammation, and BRD4 overexpression. In vitro, using human coronary artery smooth muscle cells from PAH, CAD and non-PAH–non-CAD patients, we showed that both PAH and CAD smooth muscle cells exhibited increased proliferation and suppressed apoptosis in a BRD4-dependent manner. In vivo, improvement of PAH by BRD4 inhibitor was associated with a reduction in coronary remodeling and interleukin-6 expression. Conclusions— Overall, this study demonstrates that increased BRD4 expression in coronary arteries of patient with PAH contributes to vascular remodeling and comorbidity development.


American Journal of Respiratory and Critical Care Medicine | 2018

Mitochondrial HSP90 Accumulation Promotes Vascular Remodeling in Pulmonary Arterial Hypertension

Olivier Boucherat; Thibaut Peterlini; Alice Bourgeois; Valérie Nadeau; Sandra Breuils-Bonnet; Stéphanie Boilet-Molez; François Potus; Jolyane Meloche; Sophie Chabot; Caroline Lambert; Eve Tremblay; Young Chan Chae; Dario C. Altieri; Gopinath Sutendra; Evangelos D. Michelakis; Roxane Paulin; Steeve Provencher; Sébastien Bonnet

&NA; Rationale: Pulmonary arterial hypertension (PAH) is a vascular remodeling disease with a poor prognosis and limited therapeutic options. Although the mechanisms contributing to vascular remodeling in PAH are still unclear, several features, including hyperproliferation and resistance to apoptosis of pulmonary artery smooth muscle cells (PASMCs), have led to the emergence of the cancer‐like concept. The molecular chaperone HSP90 (heat shock protein 90) is directly associated with malignant growth and proliferation under stress conditions. In addition to being highly expressed in the cytosol, HSP90 exists in a subcellular pool compartmentalized in the mitochondria (mtHSP90) of tumor cells, but not in normal cells, where it promotes cell survival. Objectives: We hypothesized that mtHSP90 in PAH‐PASMCs represents a protective mechanism against stress, promoting their proliferation and resistance to apoptosis. Methods: Expression and localization of HSP90 were analyzed by Western blot, immunofluorescence, and immunogold electron microscopy. In vitro, effects of mtHSP90 inhibition on mitochondrial DNA integrity, bioenergetics, cell proliferation and resistance to apoptosis were assessed. In vivo, the therapeutic potential of Gamitrinib, a mitochondria‐targeted HSP90 inhibitor, was tested in fawn‐hooded and monocrotaline rats. Measurements and Main Results: We demonstrated that, in response to stress, HSP90 preferentially accumulates in PAH‐PASMC mitochondria (dual immunostaining, immunoblot, and immunogold electron microscopy) to ensure cell survival by preserving mitochondrial DNA integrity and bioenergetic functions. Whereas cytosolic HSP90 inhibition displays a lack of absolute specificity for PAH‐PASMCs, Gamitrinib decreased mitochondrial DNA content and repair capacity and bioenergetic functions, thus repressing PAH‐PASMC proliferation (Ki67 labeling) and resistance to apoptosis (Annexin V assay) without affecting control cells. In vivo, Gamitrinib improves PAH in two experimental rat models (monocrotaline and fawn‐hooded rat). Conclusions: Our data show for the first time that accumulation of mtHSP90 is a feature of PAH‐PASMCs and a key regulator of mitochondrial homeostasis contributing to vascular remodeling in PAH.


Reproductive Biomedicine Online | 2012

Implication of MEK1 and MEK2 in the establishment of the blood–placenta barrier during placentogenesis in mouse

Jean Charron; Vickram Bissonauth; Valérie Nadeau

The ERK/MAPK signalling cascade is involved in many cellular functions. In mice, the targeted ablation of genes coding for members of this pathway is often associated with embryonic death due to the abnormal development of the placenta. The placenta is essential for nutritional and gaseous exchanges between maternal and embryonic circulations, as well as for the elimination of metabolic waste. These exchanges occur without direct contact between the two circulations. In mice, the blood-placenta barrier consists of a triple layer of trophoblast cells adjacent to endothelial cells from the embryo. In the ERK/MAPK cascade, MEK1 and MEK2 are dual-specificity kinases responsible for the activation of the ERK1 and ERK2 kinases. Inactivation of Mek1 causes placental malformations resulting from defective proliferation and differentiation of the labyrinthine trophoblast cells and leading to a severe delay in the development and the vascularization of the placenta, which explains the embryonic death. Although Mek2(-/-) mutants survive without any apparent phenotype, a large proportion of Mek1(+/-)Mek2(+/-) double heterozygous mutants die during gestation from placenta anomalies affecting the establishment of the blood-placenta barrier. Together, these data reveal how crucial is the role of the ERK/MAPK pathway during the formation of the placenta.

Collaboration


Dive into the Valérie Nadeau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge