Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tina M. Cowan is active.

Publication


Featured researches published by Tina M. Cowan.


The Journal of Pediatrics | 1998

Retrospective biochemical screening of fatty acid oxidation disorders in postmortem livers of 418 cases of sudden death in the first year of life

Richard G. Boles; Elizabeth A. Buck; Miriam G. Blitzer; Marvin S. Platt; Tina M. Cowan; Spencer K. Martin; Hye-Ran Yoon; Jill A. Madsen; Miguel Reyes-Múgica; Piero Rinaldo

OBJECTIVE Fatty acid oxidation (FAO) disorders are frequently reported as the cause of sudden and unexpected death, but their postmortem recognition remains difficult. We have devised a biochemical protocol in which informative findings in liver tissue are microvesicular steatosis, elevated concentrations of C8-C16 fatty acids, glucose depletion, and low carnitine concentration. STUDY DESIGN We analyzed 27 cases representing five FAO disorders and compared the results with those obtained in a retrospective blinded analysis of 418 cases of sudden infant death (313 SIDS, 45 infections, and 34 accidents and abuse). RESULTS All cases of accidents and abuse correctly tested negative. Among the others, 25 (6%) showed at least two abnormal findings. Of these, 14 closely matched the biochemical profiles seen in specific FAO disorders. These included 2 cases with medium-chain acyl-CoA dehydrogenase deficiency, 4 cases consistent with glutaric acidemia type 2, 4 cases with either very long-chain acylcoenzyme A dehydrogenase deficiency or long-chain 3-hydroxy-acyl-coenzyme A dehydrogenase deficiency, and 4 cases predicted to be affected with carnitine uptake defect. CONCLUSION The results of this study support the view that approximately 5% of all cases of sudden infant death are likely caused by an FAO disorder.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Importance of culturing primary lymphocytes at physiological oxygen levels

Kondala R. Atkuri; Leonard A. Herzenberg; Anna-Kaisa Niemi; Tina M. Cowan; Leonore A. Herzenberg

Although studies with primary lymphocytes are almost always conducted in CO2 incubators maintained at atmospheric oxygen levels (atmosO2; 20%), the physiological oxygen levels (physO2; 5%) that cells encounter in vivo are 2–4 times lower. We show here that culturing primary T cells at atmosO2 significantly alters the intracellular redox state (decreases intracellular glutathione, increases oxidized intracellular glutathione), whereas culturing at physO2 maintains the intracellular redox environment (intracellular glutathione/oxidized intracellular glutathione) close to its in vivo status. Furthermore, we show that CD3/CD28-induced T cell proliferation (based on proliferation index and cell yield) is higher at atmosO2 than at physO2. This apparently paradoxical finding, we suggest, may be explained by two additional findings with CD3/CD28-stimulated T cells: (i) the intracellular NO (iNO) levels are higher at physO2 than at atmosO2; and (ii) the peak expression of CD69 is significantly delayed and more sustained at physO2 that at atmosO2. Because high levels of intracellular NO and sustained CD69 tend to down-regulate T cell responses in vivo, the lower proliferative T cell responses at physO2 likely reflect the in vitro operation of the natural in vivo regulatory mechanisms. Thus, we suggest caution in culturing primary lymphocytes at atmosO2 because the requisite adaptation to nonphysiological oxygen levels may seriously skew T cell responses, particularly after several days in culture.


Genetics in Medicine | 2008

Acylcarnitine profile analysis

Piero Rinaldo; Tina M. Cowan; Dietrich Matern

Disclaimer: These Technical Standards and Guidelines were developed primarily as an educational resource for clinical laboratory geneticists to help them provide quality clinical laboratory genetic services. Adherence to these standards and guidelines is voluntary and does not necessarily assure a successful medical outcome. These Standards and Guidelines should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, the clinical laboratory geneticist should apply his or her own professional judgment to the specific circumstances presented by the individual patient or specimen. Clinical laboratory geneticists are encouraged to document in the patients record the rationale for the use of a particular procedure or test, whether or not it is in conformance with these Standards and Guidelines. They also are advised to take notice of the date any particular standard or guidelines was adopted, and to consider other relevant medical and scientific information that becomes available after that date.


Genetics in Medicine | 2014

Mutations in NGLY1 cause an inherited disorder of the endoplasmic reticulum-associated degradation pathway

Gregory M. Enns; Shashi; Matthew N. Bainbridge; Michael J. Gambello; Farah R. Zahir; T Bast; R Crimian; Kelly Schoch; Julia Platt; Rachel Cox; Jonathan A. Bernstein; M Scavina; Rs Walter; A Bibb; Matthew C. Jones; Madhuri Hegde; Brett H. Graham; Anna C. Need; A Oviedo; Christian P. Schaaf; Sean M. Boyle; Atul J. Butte; Ron Chen; Michael J. Clark; Rajini Haraksingh; Tina M. Cowan; Ping He; Sylvie Langlois; Huda Y. Zoghbi; Michael Snyder

Purpose:The endoplasmic reticulum–associated degradation pathway is responsible for the translocation of misfolded proteins across the endoplasmic reticulum membrane into the cytosol for subsequent degradation by the proteasome. To define the phenotype associated with a novel inherited disorder of cytosolic endoplasmic reticulum–associated degradation pathway dysfunction, we studied a series of eight patients with deficiency of N-glycanase 1.Methods:Whole-genome, whole-exome, or standard Sanger sequencing techniques were employed. Retrospective chart reviews were performed in order to obtain clinical data.Results:All patients had global developmental delay, a movement disorder, and hypotonia. Other common findings included hypolacrima or alacrima (7/8), elevated liver transaminases (6/7), microcephaly (6/8), diminished reflexes (6/8), hepatocyte cytoplasmic storage material or vacuolization (5/6), and seizures (4/8). The nonsense mutation c.1201A>T (p.R401X) was the most common deleterious allele.Conclusion:NGLY1 deficiency is a novel autosomal recessive disorder of the endoplasmic reticulum–associated degradation pathway associated with neurological dysfunction, abnormal tear production, and liver disease. The majority of patients detected to date carry a specific nonsense mutation that appears to be associated with severe disease. The phenotypic spectrum is likely to enlarge as cases with a broader range of mutations are detected.Genet Med 16 10, 751–758.


PLOS Computational Biology | 2009

Mapping Gene Associations in Human Mitochondria using Clinical Disease Phenotypes

Curt Scharfe; Henry Horng-Shing Lu; Jutta K. Neuenburg; Edward A. Allen; Guan-Cheng Li; Thomas Klopstock; Tina M. Cowan; Gregory M. Enns; Ronald W. Davis

Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects within the mitochondrial system. The accompanying knowledgebase (http://www.mitophenome.org/) supports the study of clinical diseases and associated genes.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Inherited disorders affecting mitochondrial function are associated with glutathione deficiency and hypocitrullinemia

Kondala R. Atkuri; Tina M. Cowan; Tony Kwan; Angelina Ng; Leonard A. Herzenberg; Leonore A. Herzenberg; Gregory M. Enns

Disorders affecting mitochondria, including those that directly affect the respiratory chain function or result from abnormalities in branched amino acid metabolism (organic acidemias), have been shown to be associated with impaired redox balance. Almost all of the evidence underlying this conclusion has been obtained from studies on patient biopsies or animal models. Since the glutathione (iGSH) system provides the main protection against oxidative damage, we hypothesized that untreated oxidative stress in individuals with mitochondrial dysfunction would result in chronic iGSH deficiency. We confirm this hypothesis here in studies using high-dimensional flow cytometry (Hi-D FACS) and biochemical analysis of freshly obtained blood samples from patients with mitochondrial disorders or organic acidemias. T lymphocyte subsets, monocytes and neutrophils from organic acidemia and mitochondrial patients who were not on antioxidant supplements showed low iGSH levels, whereas similar subjects on antioxidant supplements showed normal iGSH. Measures of iROS levels in blood were insufficient to reveal the chronic oxidative stress in untreated patients. Patients with organic acidemias showed elevated plasma protein carbonyls, while plasma samples from all patients tested showed hypocitrullinemia. These findings indicate that measurements of iGSH in leukocytes may be a particularly useful biomarker to detect redox imbalance in mitochondrial disorders and organic acidemias, thus providing a relatively non-invasive means to monitor disease status and response to therapies. Furthermore, studies here suggest that antioxidant therapy may be useful for relieving the chronic oxidative stress that otherwise occurs in patients with mitochondrial dysfunction.


Blood | 2011

The role of vanin-1 and oxidative stress-related pathways in distinguishing acute and chronic pediatric ITP.

Bing Zhang; Clara Lo; Lei Shen; Ruchira Sood; Carol Jones; Kristina Cusmano-Ozog; Shaun Park-Snyder; Wendy Wong; Michael Jeng; Tina M. Cowan; Edgar G. Engleman; James L. Zehnder

Pediatric immune thrombocytopenia (ITP) is usually self-limited. However, approximately 20% of children develop chronic ITP, which can be associated with significant morbidity because of long-term immunosuppression and splenectomy in refractory cases. To explore the molecular mechanism of chronic ITP compared with acute ITP, we studied 63 pediatric patients with ITP. Gene expression analysis of whole blood revealed distinct signatures for acute and chronic ITP. Oxidative stress-related pathways were among the most significant chronic ITP-associated pathways. Overexpression of VNN1, an oxidative stress sensor in epithelial cells, was most strongly associated with progression to chronic ITP. Studies of normal persons demonstrated VNN1 expression in a variety of blood cells. Exposure of blood mononuclear cells to oxidative stress inducers elicited dramatic up-regulation of VNN1 and down-regulation of PPARγ, indicating a role for VNN1 as a peripheral blood oxidative stress sensor. Assessment of redox state by tandem mass spectrometry demonstrated statistically significant lower glutathione ratios in patients with ITP versus healthy controls; lower glutathione ratios were also seen in untreated patients with ITP compared with recently treated patients. Our work demonstrates distinct patterns of gene expression in acute and chronic ITP and implicates oxidative stress pathways in the pathogenesis of chronic pediatric ITP.


Journal of Chromatography B | 2013

A new LC-MS/MS method for the clinical determination of reduced and oxidized glutathione from whole blood.

Tereza Moore; Anthony Le; Anna-Kaisa Niemi; Tony Kwan; Krinstina Cusmano-Ozog; Gregory M. Enns; Tina M. Cowan

Reduced levels of glutathione (γ-glutamylcysteinylglycine, GSH) and the ratio of GSH to glutathione disulfide (GSSG) can serve as important indicators of oxidative stress and disease risk. Measured concentrations of GSH and GSSG vary widely between laboratories, largely due to the instability of GSH during sample handling and variables arising from different analytical methods. We have developed a simple and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for measuring whole blood GSH and GSSG that minimizes preanalytic and analytic variability, reliably eliminates interference from ion suppression, and can easily be implemented in clinical laboratories. Samples were deproteinized with sulfosalicylic acid (SSA) and derivatized with N-ethylmaleimide (NEM) in a single preparative step, and the resulting supernatants combined with stable-isotope internal standards (GSH-(13)C, (15)N-NEM and GSSG-(13)C,(15)N), subjected to chromatographic separation using a Hypercarb column, and analyzed by MS/MS in the positive-ion mode. Results showed excellent linearity for both GSH and GSSG over the ranges of physiologic normal, with inter- and intra-assay CVs of 3.1-4.3% and accuracy between 95% and 101%. The lower limits of detection (LLOD) were 0.4μM for GSH and 0.1μM for GSSG and the lower limits of quantitation (LLOQ) were 1.5μM for GSH and 0.1μM for GSSG. Derivatized samples are stable for at least 3 years when stored at -80°C, and underivatized samples for at least 24h at either 4°C or room temperature. Reference intervals were determined for 59 control samples, and were (mean±SD): GSH 900±140μM; GSSG 1.17±0.43μM; GSH/GSSG 880±370.


Journal of Chromatography B | 2014

A rapid, sensitive method for quantitative analysis of underivatized amino acids by liquid chromatography-tandem mass spectrometry (LC-MS/MS).

Anthony Le; Angelina Ng; Tony Kwan; Kristina Cusmano-Ozog; Tina M. Cowan

The quantitation of free amino acids from physiologic samples is essential for diagnosing and monitoring patients with inherited metabolic disorders. Current methods are hindered by long preparative and/or analysis times, expensive reagents, and often suboptimal performance characteristics. To overcome these challenges, a improved method for amino acid analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed and validated. Samples were deproteinized with sulfosalicylic acid and supernatants diluted with tridecafluoroheptanoic acid. Chromatographic separation of amino acids occurred using two columns, with conditions favoring resolution of isobaric compounds and minimizing ion suppression. Eluted compounds were detected by selective reaction monitoring, and quantitated by relating peak areas of amino acids to externally run standards. Validation studies evaluated linearity, within- and between-run imprecision, lower limits of detection and quantification for 33 amino acids, and correlation with the Biochrom 30 Amino Acid Analyzer. Total run time including re-equilibration was 15min per sample. Within-run precision averaged 2.8% for all compounds, with an average linear correlation coefficient of 0.995. The majority of compounds were reliably quantitated at ≤0.1μM. Between-run precision averaged 4.0%. Results showed excellent correlation with the Biochrom 30 amino acid analyzer with an average overall correlation of 0.908. We conclude that our method is extremely sensitive, specific and reproducible and represents an improvement over other currently available technologies.


Genetics in Medicine | 2010

Technical standards and guidelines for the diagnosis of biotinidase deficiency.

Tina M. Cowan; Miriam G. Blitzer; Barry Wolf

Abstract: Biotinidase deficiency is an autosomal recessively inherited disorder of biotin recycling that is associated with neurologic and cutaneous consequences if untreated. Fortunately, the clinical features of the disorder can be ameliorated or prevented by administering pharmacological doses of the vitamin biotin. Newborn screening and confirmatory diagnosis of biotinidase deficiency encompasses both enzymatic and molecular testing approaches. These guidelines were developed to define and standardize laboratory procedures for enzymatic biotinidase testing, to delineate situations for which follow-up molecular testing is warranted, and to characterize variables that can influence test performance and interpretation of results.

Collaboration


Dive into the Tina M. Cowan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge