Guangjin Liu
Nanjing Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guangjin Liu.
PLOS ONE | 2012
Yang Wang; Li Yi; Zongfu Wu; Jing Shao; Guangjin Liu; Hongjie Fan; Wei Zhang; Chengping Lu
Streptococcus suis (SS) is a zoonotic pathogen that causes severe disease symptoms in pigs and humans. Biofilms of SS bind to extracellular matrix proteins in both endothelial and epithelial cells and cause persistent infections. In this study, the differences in the protein expression profiles of SS grown either as planktonic cells or biofilms were identified using comparative proteomic analysis. The results revealed the existence of 13 proteins of varying amounts, among which six were upregulated and seven were downregulated in the Streptococcus biofilm compared with the planktonic controls. The convalescent serum from mini-pig, challenged with SS, was applied in a Western blot assay to visualize all proteins from the biofilm that were grown in vitro and separated by two-dimensional gel electrophoresis. A total of 10 immunoreactive protein spots corresponding to nine unique proteins were identified by MALDI-TOF/TOF-MS. Of these nine proteins, five (Manganese-dependent superoxide dismutase, UDP-N-acetylglucosamine 1-carboxyvinyltransferase, ornithine carbamoyltransferase, phosphoglycerate kinase, Hypothetical protein SSU05_0403) had no previously reported immunogenic properties in SS to our knowledge. The remaining four immunogenic proteins (glyceraldehyde-3-phosphate dehydrogenase, hemolysin, pyruvate dehydrogenase and DnaK) were identified under both planktonic and biofilm growth conditions. In conclusion, the protein expression pattern of SS, grown as biofilm, was different from the SS grown as planktonic cells. These five immunogenic proteins that were specific to SS biofilm cells may potentially be targeted as vaccine candidates to protect against SS biofilm infections. The four proteins common to both biofilm and planktonic cells can be targeted as vaccine candidates to protect against both biofilm and acute infections.
Journal of Bacteriology | 2012
Guangjin Liu; Wei Zhang; Chengping Lu
This work describes a whole-genome sequence of Streptococcus agalactiae strain GD201008-001, a pathogen causing meningoencephalitis in cultural tilapia in China. The genome sequence provides opportunities to understand the piscine GBS pathogenicity and its genetic basis associated with host tropism.
Infection and Immunity | 2014
Zhaofei Wang; Changming Guo; Yannan Xu; Guangjin Liu; Chengping Lu; Yong-Jie Liu
ABSTRACT Streptococcus agalactiae is the causative agent of septicemia and meningitis in fish. Previous studies have shown that hyaluronidase (Hyl) is an important virulence factor in many Gram-positive bacteria. To investigate the role of S. agalactiae Hyl during interaction with macrophages, we inactivated the gene encoding extracellular hyaluronidase, hylB, in a clinical Hyl+ isolate. The isogenic hylb mutant (Δhylb) displayed reduced survival in macrophages compared to the wild type and stimulated a significantly higher release of proinflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α), than the wild type in macrophages as well as in mice. Furthermore, only Hyl+ strains could grow utilizing hyaluronic acid (HA) as the sole carbon source, suggesting that Hyl permits the organism to utilize host HA as an energy source. Fifty percent lethal dose (LD50) determinations in zebrafish demonstrated that the hylb mutant was highly attenuated relative to the wild-type strain. Experimental infection of BALB/c mice revealed that bacterial loads in the blood, spleen, and brain at 16 h postinfection were significantly reduced in the ΔhylB mutant compared to those in wild-type-infected mice. In conclusion, hyaluronidase has a strong influence on the intracellular survival of S. agalactiae and proinflammatory cytokine expression, suggesting that it plays a key role in S. agalactiae pathogenicity.
PLOS ONE | 2011
Wei Zhang; Guangjin Liu; Fang Tang; Jing Shao; Yan Lu; Yinli Bao; Huochun Yao; Chengping Lu
Streptococcus suis serotype 2 (SS2) is a zoonotic pathogen that can cause infections in pigs and humans. Bacterial surface proteins are often investigated as potential vaccine candidates and biomarkers of virulence. In this study, a novel method for identifying bacterial surface proteins is presented, which combines immunoproteomic and immunoserologic techniques. Critical to the success of this new method is an improved procedure for generating two-dimensional electrophoresis gel profiles of S. suis proteins. The S. suis surface proteins identified in this study include muramidase-released protein precursor (MRP) and an ABC transporter protein, while MRP is thought to be one of the main virulence factors in SS2 located on the bacterial surface. Herein, we demonstrate that the ABC transporter protein can bind to HEp-2 cells, which strongly suggests that this protein is located on the bacterial cell surface and may be involved in pathogenesis. An immunofluorescence assay confirmed that the ABC transporter is localized to the bacterial outer surface. This new method may prove to be a useful tool for identifying surface proteins, and aid in the development of new vaccine subunits and disease diagnostics.
PLOS ONE | 2014
Changming Guo; Rong-Rong Chen; Dildar Hussain Kalhoro; Zhaofei Wang; Guangjin Liu; Chengping Lu; Yong-Jie Liu
Streptococcus agalactiae, long recognized as a mammalian pathogen, is an emerging concern with regard to fish. In this study, we used a mouse model and in vitro cell infection to evaluate the pathogenetic characteristics of S. agalactiae GD201008-001, isolated from tilapia in China. This bacterium was found to be highly virulent and capable of inducing brain damage by migrating into the brain by crossing the blood–brain barrier (BBB). The phagocytosis assays indicated that this bacterium could be internalized by murine macrophages and survive intracellularly for more than 24 h, inducing injury to macrophages. Further, selective capture of transcribed sequences (SCOTS) was used to investigate microbial gene expression associated with intracellular survival. This positive cDNA selection technique identified 60 distinct genes that could be characterized into 6 functional categories. More than 50% of the differentially expressed genes were involved in metabolic adaptation. Some genes have previously been described as associated with virulence in other bacteria, and four showed no significant similarities to any other previously described genes. This study constitutes the first step in further gene expression analyses that will lead to a better understanding of the molecular mechanisms used by S. agalactiae to survive in macrophages and to cross the BBB.
Fems Immunology and Medical Microbiology | 2012
Zhipeng Zhai; Longfei Cheng; Fang Tang; Yan Lu; Jing Shao; Guangjin Liu; Yinli Bao; Mianmian Chen; Kexin Shang; Hongjie Fan; Huochun Yao; Chengping Lu; Wei Zhang
Riemerella anatipestifer (RA) is one of the most important bacterial pathogens of ducks and other avian species worldwide. Twenty-one serotypes of RA have been identified, with RA serotype two (RA2) being reported as one of the most predominant serotypes underlying infections in China. Current approaches to the control of RA are hindered by the absence of effective vaccines, particularly those that exhibit cross-protection between different serotypes. In this study, a combination of two-dimensional electrophoresis, Western blot analysis and mass spectrometry were used to identify the antigenic proteins of RA2. A total of 16 immunoreactive proteins, representing 12 distinct proteins, were identified. These included OmpA, a known immunogenic protein of RA, as well as novel immunogens. PCR analysis also indicated that genes corresponding to each of the 12 distinct proteins were conserved among different RA serotypes. Eleven genes encoding these proteins were cloned and expressed in Escherichia coli BL21 (DE3). Eight of the 11 expressed proteins were able to react with hyperimmune rabbit serum against RAf153. One of these, recombinant elongation factor G, responded to RA2 sera but not RA1, whereas recombinant OmpA responded to both RA1 and RA2 sera. These data form a basis for the development of vaccine for both homologous and heterogeneous RA serotypes in addition to the production of target antigens for the development of diagnostic antibodies with the potential to distinguish between RA serotypes.
Proteome Science | 2011
Wei Zhang; Jing Shao; Guangjin Liu; Fang Tang; Yan Lu; Zhipeng Zhai; Yang Wang; Zongfu Wu; Huochun Yao; Chengping Lu
BackgroundActinobacillus pleuropneumoniae (APP) is one of the most important swine pathogens worldwide. Identification and characterization of novel antigenic APP vaccine candidates are underway. In the present study, we use an immunoproteomic approach to identify APP protein antigens that may elicit an immune response in serotype 1 naturally infected swine and serotype 1 virulent strain S259-immunized rabbits.ResultsProteins from total cell lysates of serotype 1 APP were separated by two-dimensional electrophoresis (2DE). Western blot analysis revealed 21 immunoreactive protein spots separated in the pH 4-7 range and 4 spots in the pH 7-11 range with the convalescent sera from swine; we found 5 immunoreactive protein spots that separated in the pH 4-7 range and 2 in the pH 7-11 range with hyperimmune sera from S259-immunized rabbits. The proteins included the known antigens ApxIIA, protective surface antigen D15, outer membrane proteins P5, subunit NqrA. The remaining antigens are being reported as immunoreactive proteins in APP for the first time, to our knowledge.ConclusionsWe identified a total of 42 immunoreactive proteins of the APP serotype 1 virulent strain S259 which represented 32 different proteins, including some novel immunoreactive factors which could be researched as vaccine candidates.
Diseases of Aquatic Organisms | 2016
Guangjin Liu; Jielian Zhu; Kangming Chen; Tingting Gao; Huochun Yao; Yongjie Liu; Wei Zhang; Chengping Lu
Vaccination is a widely accepted and effective method to prevent most pathogenic diseases in aquaculture. Various species of tilapia, especially Nile tilapia Oreochromis niloticus, are farmed worldwide because of their high consumer demand. Recently, the tilapia-breeding industry has been hampered by outbreaks of Streptococcus agalactiae infection, which cause high mortality and huge economic losses. Many researchers have attempted to develop effective S. agalactiae vaccines for tilapia. This review provides a summary of the different kinds of S. agalactiae vaccines for tilapia that have been developed recently. Among the various vaccine types, inactivated S. agalactiae vaccines showed superior protection efficiency when compared with live attenuated, recombinant and DNA vaccines. With respect to vaccination method, injecting the vaccine into tilapia provided the most effective immunoprotection. Freunds incomplete adjuvant appeared to be suitable for tilapia vaccines. Other factors, such as immunization duration and number, fish size and challenge dose, also influenced the vaccine efficacy.
Infection and Immunity | 2017
Ke Ma; Qing Cao; Su Luo; Zhaofei Wang; Guangjin Liu; Chengping Lu; Yongjie Liu
ABSTRACT Clustered regularly interspaced palindromic repeats (CRISPR) and their associated cas genes have been demonstrated to regulate self-genes and virulence in many pathogens. In this study, we found that inactivation of cas9 caused reduced adhesion and intracellular survival of the piscine Streptococcus agalactiae strain GD201008-001 and significantly decreased the virulence of this strain in zebrafish and mice. Further investigation indicated that the regR transcriptional regulator was upregulated in the Δcas9 mutant. As regR mediates the repression of hyaluronidase, a critical factor involved in opening the blood-brain barrier (BBB) in mice, cas9-mediated repression of regR transcription is important for S. agalactiae to open the BBB and thereby cause meningitis in animals. This study expands our understanding of endogenous gene regulation mediated by CRISPR-Cas systems in bacteria.
BMC Veterinary Research | 2014
Guangjin Liu; Wei Zhang; Yongjie Liu; Huochun Yao; Chengping Lu; Pao Xu
BackgroundSince 2009, large-scale Streptococcus agalactiae infections have broken out in cultured tilapia farms in China, resulting in considerable economic losses. Screening of the surface proteins is required to identify virulence factors or protective antigens involved in piscine S.agalactiae infections in tilapia. Pre-absorbed immunoproteomics method (PAIM) is a useful method previously established in our laboratory for identifying bacterial surface proteins.ResultsA serine-rich repeat protein family 1 (Srr-1), designated XF, was identified by PAIM in piscine S. agalactiae isolate GD201008-001. To investigate the role of XF in the pathogenesis of piscine S. agalactiae, an isogenic xf mutant strain (Δxf) and a complemented strain (CΔxf) were successfully constructed. The Δxf mutant and CΔxf showed no significant differences in growth characteristics and adherence to HEp-2 cells compared with the wild-type strain. However the 50% lethal dose of Δxf was increased (4-fold) compared with that of the parental strain in a zebrafish infection model.ConclusionsThe findings demonstrated that XF is a virulence-related, highly immunoreactive surface protein and is involved in the pathogenicity of S. agalactiae infections in fish.