Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gudrun E. Moore is active.

Publication


Featured researches published by Gudrun E. Moore.


Journal of Investigative Dermatology | 2013

Multiple congenital melanocytic nevi and neurocutaneous melanosis are caused by postzygotic mutations in codon 61 of NRAS

V.A. Kinsler; Anna Thomas; Miho Ishida; Neil W. Bulstrode; Sam Loughlin; Sandra Hing; Jane Chalker; Kathryn McKenzie; Sayeda Abu-Amero; Olga Slater; Estelle Chanudet; Rodger Palmer; Deborah Morrogh; Philip Stanier; Eugene Healy; Nj Sebire; Gudrun E. Moore

Congenital melanocytic nevi (CMN) can be associated with neurological abnormalities and an increased risk of melanoma. Mutations in NRAS, BRAF, and Tp53 have been described in individual CMN samples; however, their role in the pathogenesis of multiple CMN within the same subject and development of associated features has not been clear. We hypothesized that a single postzygotic mutation in NRAS could be responsible for multiple CMN in the same individual, as well as for melanocytic and nonmelanocytic central nervous system (CNS) lesions. From 15 patients, 55 samples with multiple CMN were sequenced after site-directed mutagenesis and enzymatic digestion of the wild-type allele. Oncogenic missense mutations in codon 61 of NRAS were found in affected neurological and cutaneous tissues of 12 out of 15 patients, but were absent from unaffected tissues and blood, consistent with NRAS mutation mosaicism. In 10 patients, the mutation was consistently c.181C>A, p.Q61K, and in 2 patients c.182A>G, p.Q61R. All 11 non-melanocytic and melanocytic CNS samples from 5 patients were mutation positive, despite NRAS rarely being reported as mutated in CNS tumors. Loss of heterozygosity was associated with the onset of melanoma in two cases, implying a multistep progression to malignancy. These results suggest that single postzygotic NRAS mutations are responsible for multiple CMN and associated neurological lesions in the majority of cases.


Journal of Molecular Medicine | 2007

Elevated placental expression of the imprinted PHLDA2 gene is associated with low birth weight

Apostolidou S; Sayeda Abu-Amero; O'Donoghue K; Jennifer M. Frost; Olafsdottir O; Chavele Km; John C. Whittaker; Loughna P; Philip Stanier; Gudrun E. Moore

The identification of genes that regulate fetal growth will help establish the reasons for intrauterine growth restriction. Most autosomal genes are expressed biallelically, but some are imprinted, expressed only from one parental allele. Imprinted genes are associated with fetal growth and development. The growth of the fetus in utero relies on effective nutrient transfer from the mother to the fetus via the placenta. Some current research on the genetic control of fetal growth has focused on genes that display imprinted expression in utero. The expression levels of four imprinted genes, the paternally expressed insulin growth factor 2 (IGF2), the mesoderm-specific transcript isoform 1 (MEST); the maternally expressed pleckstrin homology-like domain, family A, member 2 (PHLDA2); and the polymorphically imprinted insulin-like growth factor 2 (IGF2R) gene are all known to have roles in fetal growth and were studied in the placentae of 200 white European, normal term babies. The quantitative expression analysis with real-time PCR showed the maternally expressing PHLDA2 but not the paternally expressing IGF2 and MEST, nor the polymorphic maternally expressing IGF2R placental levels to have a statistically significant effect on birth weight. PHLDA2 expression levels are negatively correlated with size at birth. These data implicate PHLDA2 as an imprinted gene important in fetal growth and also as a potential marker of fetal growth.


Molecular Therapy | 2012

Valproic Acid Confers Functional Pluripotency to Human Amniotic Fluid Stem Cells in a Transgene-free Approach

Dafni Moschidou; Sayandip Mukherjee; Michael P. Blundell; Katharina Drews; Gemma N. Jones; Hassan Abdulrazzak; Beata Nowakowska; Anju Phoolchund; Kenneth Lay; T Selvee Ramasamy; Mara Cananzi; Daniel Nettersheim; M.H.F. Sullivan; Jennifer M. Frost; Gudrun E. Moore; Joris Vermeesch; Nicholas M. Fisk; Adrian J. Thrasher; Anthony Atala; James Adjaye; Hubert Schorle; Paolo De Coppi; Pascale V. Guillot

Induced pluripotent stem cells (iPSCs) with potential for therapeutic applications can be derived from somatic cells via ectopic expression of a set of limited and defined transcription factors. However, due to risks of random integration of the reprogramming transgenes into the host genome, the low efficiency of the process, and the potential risk of virally induced tumorigenicity, alternative methods have been developed to generate pluripotent cells using nonintegrating systems, albeit with limited success. Here, we show that c-KIT+ human first-trimester amniotic fluid stem cells (AFSCs) can be fully reprogrammed to pluripotency without ectopic factors, by culture on Matrigel in human embryonic stem cell (hESC) medium supplemented with the histone deacetylase inhibitor (HDACi) valproic acid (VPA). The cells share 82% transcriptome identity with hESCs and are capable of forming embryoid bodies (EBs) in vitro and teratomas in vivo. After long-term expansion, they maintain genetic stability, protein level expression of key pluripotency factors, high cell-division kinetics, telomerase activity, repression of X-inactivation, and capacity to differentiate into lineages of the three germ layers, such as definitive endoderm, hepatocytes, bone, fat, cartilage, neurons, and oligodendrocytes. We conclude that AFSC can be utilized for cell banking of patient-specific pluripotent cells for potential applications in allogeneic cellular replacement therapies, pharmaceutical screening, and disease modeling.


Human Molecular Genetics | 2009

Tbx22null mice have a submucous cleft palate due to reduced palatal bone formation and also display ankyloglossia and choanal atresia phenotypes

Erwin Pauws; Aya Hoshino; Lucy Bentley; Suresh I. Prajapati; Charles Keller; Peter Hammond; Juan Pedro Martinez-Barbera; Gudrun E. Moore; Philip Stanier

Craniofacial defects involving the lip and/or palate are among the most common human birth defects. X-linked cleft palate and ankyloglossia results from loss-of-function mutations in the gene encoding the T-box transcription factor TBX22. Further studies show that TBX22 mutations are also found in around 5% of non-syndromic cleft palate patients. Although palate defects are obvious at birth, the underlying developmental pathogenesis remains unclear. Here, we report a Tbx22null mouse, which has a submucous cleft palate (SMCP) and ankyloglossia, similar to the human phenotype, with a small minority showing overt clefts. We also find persistent oro-nasal membranes or, in some mice a partial rupture, resulting in choanal atresia. Each of these defects can cause severe breathing and/or feeding difficulties in the newborn pups, which results in ∼50% post-natal lethality. Analysis of the craniofacial skeleton demonstrates a marked reduction in bone formation in the posterior hard palate, resulting in the classic notch associated with SMCP. Our results suggest that Tbx22 plays an important role in the osteogenic patterning of the posterior hard palate. Ossification is severely reduced after condensation of the palatal mesenchyme, resulting from a delay in the maturation of osteoblasts. Rather than having a major role in palatal shelf closure, we show that Tbx22 is an important determinant for intramembranous bone formation in the posterior hard palate, which underpins normal palate development and function. These findings could have important implications for the molecular diagnosis in patients with isolated SMCP and/or unexplained choanal atresia.


Philosophical Transactions of the Royal Society B | 2015

The role and interaction of imprinted genes in human fetal growth.

Gudrun E. Moore; Miho Ishida; Charalambos Demetriou; Lara Al-Olabi; Lydia J. Leon; Anna Thomas; Sayeda Abu-Amero; Jennifer M. Frost; Jaime L. Stafford; Yao Chaoqun; Andrew J. Duncan; Rachel Baigel; Marina Brimioulle; Isabel Iglesias-Platas; Sophia Apostolidou; Reena Aggarwal; John C. Whittaker; Argyro Syngelaki; Kypros H. Nicolaides; Lesley Regan; David Monk; Philip Stanier

Identifying the genetic input for fetal growth will help to understand common, serious complications of pregnancy such as fetal growth restriction. Genomic imprinting is an epigenetic process that silences one parental allele, resulting in monoallelic expression. Imprinted genes are important in mammalian fetal growth and development. Evidence has emerged showing that genes that are paternally expressed promote fetal growth, whereas maternally expressed genes suppress growth. We have assessed whether the expression levels of key imprinted genes correlate with fetal growth parameters during pregnancy, either early in gestation, using chorionic villus samples (CVS), or in term placenta. We have found that the expression of paternally expressing insulin-like growth factor 2 (IGF2), its receptor IGF2R, and the IGF2/IGF1R ratio in CVS tissues significantly correlate with crown–rump length and birthweight, whereas term placenta expression shows no correlation. For the maternally expressing pleckstrin homology-like domain family A, member 2 (PHLDA2), there is no correlation early in pregnancy in CVS but a highly significant negative relationship in term placenta. Analysis of the control of imprinted expression of PHLDA2 gave rise to a maternally and compounded grand-maternally controlled genetic effect with a birthweight increase of 93/155 g, respectively, when one copy of the PHLDA2 promoter variant is inherited. Expression of the growth factor receptor-bound protein 10 (GRB10) in term placenta is significantly negatively correlated with head circumference. Analysis of the paternally expressing delta-like 1 homologue (DLK1) shows that the paternal transmission of type 1 diabetes protective G allele of rs941576 single nucleotide polymorphism (SNP) results in significantly reduced birth weight (−132 g). In conclusion, we have found that the expression of key imprinted genes show a strong correlation with fetal growth and that for both genetic and genomics data analyses, it is important not to overlook parent-of-origin effects.


American Journal of Human Genetics | 2014

Mutations in SNX14 Cause a Distinctive Autosomal-Recessive Cerebellar Ataxia and Intellectual Disability Syndrome

Anna Thomas; H Williams; Núria Setó-Salvia; Chiara Bacchelli; Dagan Jenkins; Mary O'Sullivan; Konstantinos Mengrelis; Miho Ishida; Louise Ocaka; Estelle Chanudet; Chela James; Francesco Lescai; Glenn Anderson; Deborah Morrogh; Mina Ryten; Andrew J. Duncan; Yun Jin Pai; Jorge M. Saraiva; Fabiana Ramos; Bernadette Farren; Dawn E. Saunders; Bertrand Vernay; Paul Gissen; Anna Straatmaan-Iwanowska; Frank Baas; Nicholas W. Wood; Joshua Hersheson; Henry Houlden; Jane L. Hurst; Richard H. Scott

Intellectual disability and cerebellar atrophy occur together in a large number of genetic conditions and are frequently associated with microcephaly and/or epilepsy. Here we report the identification of causal mutations in Sorting Nexin 14 (SNX14) found in seven affected individuals from three unrelated consanguineous families who presented with recessively inherited moderate-severe intellectual disability, cerebellar ataxia, early-onset cerebellar atrophy, sensorineural hearing loss, and the distinctive association of progressively coarsening facial features, relative macrocephaly, and the absence of seizures. We used homozygosity mapping and whole-exome sequencing to identify a homozygous nonsense mutation and an in-frame multiexon deletion in two families. A homozygous splice site mutation was identified by Sanger sequencing of SNX14 in a third family, selected purely by phenotypic similarity. This discovery confirms that these characteristic features represent a distinct and recognizable syndrome. SNX14 encodes a cellular protein containing Phox (PX) and regulator of G protein signaling (RGS) domains. Weighted gene coexpression network analysis predicts that SNX14 is highly coexpressed with genes involved in cellular protein metabolism and vesicle-mediated transport. All three mutations either directly affected the PX domain or diminished SNX14 levels, implicating a loss of normal cellular function. This manifested as increased cytoplasmic vacuolation as observed in cultured fibroblasts. Our findings indicate an essential role for SNX14 in neural development and function, particularly in development and maturation of the cerebellum.


Genome Biology | 2015

Trans effects of chromosome aneuploidies on DNA methylation patterns in human Down syndrome and mouse models

Maite Mendioroz; Catherine Do; Xiaoling Jiang; Chunhong Liu; Huferesh K. Darbary; Charles F. Lang; John Lin; Anna Thomas; Sayeda Abu-Amero; Philip Stanier; Alexis Temkin; Alexander Yale; Meng-Min Liu; Yang Li; Martha Salas; Kristi Kerkel; George T. Capone; Wayne Silverman; Y. Eugene Yu; Gudrun E. Moore; Jerzy Wegiel; Benjamin Tycko

BackgroundTrisomy 21 causes Down syndrome (DS), but the mechanisms by which the extra chromosome leads to deficient intellectual and immune function are not well understood.ResultsHere, we profile CpG methylation in DS and control cerebral and cerebellar cortex of adults and cerebrum of fetuses. We purify neuronal and non-neuronal nuclei and T lymphocytes and find biologically relevant genes with DS-specific methylation (DS-DM) in each of these cell types. Some genes show brain-specific DS-DM, while others show stronger DS-DM in T cells. Both 5-methyl-cytosine and 5-hydroxy-methyl-cytosine contribute to the DS-DM. Thirty percent of genes with DS-DM in adult brain cells also show DS-DM in fetal brains, indicating early onset of these epigenetic changes, and we find early maturation of methylation patterns in DS brain and lymphocytes. Some, but not all, of the DS-DM genes show differential expression. DS-DM preferentially affected CpGs in or near specific transcription factor binding sites (TFBSs), implicating a mechanism involving altered TFBS occupancy. Methyl-seq of brain DNA from mouse models with sub-chromosomal duplications mimicking DS reveals partial but significant overlaps with human DS-DM and shows that multiple chromosome 21 genes contribute to the downstream epigenetic effects.ConclusionsThese data point to novel biological mechanisms in DS and have general implications for trans effects of chromosomal duplications and aneuploidies on epigenetic patterning.


American Journal of Medical Genetics Part A | 2009

Evaluation of folate metabolism gene polymorphisms as risk factors for open and closed neural tube defects.

K. Doudney; J. Grinham; J. Whittaker; Sally Ann Lynch; Dominic Thompson; Gudrun E. Moore; Andrew J. Copp; Nicholas D. E. Greene; Philip Stanier

Evaluation of Folate Metabolism Gene Polymorphisms as Risk Factors for Open and Closed Neural Tube Defects K. Doudney, J. Grinham, J. Whittaker, S.A. Lynch, D. Thompson, G.E. Moore, A.J. Copp, N.D.E. Greene, and P. Stanier* UCL Institute of Child Health, University College London, London, UK Department of Pathology, University of Otago, Christchurch, New Zealand Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK National Centre for Medical Genetics, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland Department of Neurosurgery, Great Ormond Street Hospital for Children, London, UK


Clinical Genetics | 2013

X-linked CHARGE-like Abruzzo-Erickson syndrome and classic cleft palate with ankyloglossia result from TBX22 splicing mutations

Erwin Pauws; Emma Peskett; C Boissin; A Hoshino; Konstantinos Mengrelis; E Carta; Ma Abruzzo; Melissa Lees; Gudrun E. Moore; Robert P. Erickson; Philip Stanier

X‐linked cleft palate (CPX) is caused by mutations in the gene encoding the TBX22 transcription factor and is known to exhibit phenotypic variability, usually involving either a complete, partial or submucous cleft palate, with or without ankyloglossia. This study hypothesized a possible involvement of TBX22 in a family with X‐linked, CHARGE‐like Abruzzo–Erickson syndrome, of unknown etiology. The phenotype extends to additional features including sensorineural deafness and coloboma, which are suggested by the Tbx22 developmental expression pattern but not previously associated in CPX patients. A novel TBX22 splice acceptor mutation (c.593−5T>A) was identified that tracked with the phenotype in this family. A novel splice donor variant (c.767+5G>A) and a known canonical splice donor mutation (c.767+1G>A) affecting the same exon were identified in patients with classic CPX phenotypes and were comparatively analyzed using both in silico and in vitro splicing studies. All three variants were predicted to abolish normal mRNA splicing and an in vitro assay indicated that use of alternative splice sites was a likely outcome. Collectively, the data showed the functional effect of several novel intronic splice site variants but most importantly confirms that TBX22 is the gene underlying Abruzzo–Erickson syndrome, expanding the phenotypic spectrum of TBX22 mutations.


Clinical Endocrinology | 2012

The growth hormone receptor gene deleted for exon three (GHRd3) polymorphism is associated with birth and placental weight

Raja Padidela; Sinead M. Bryan; Sayeda Abu-Amero; Rebecca E. Hudson-Davies; John C. Achermann; Gudrun E. Moore; Peter C. Hindmarsh

Contextu2002 Human growth hormone receptor (GHR) transcripts have two isoforms, full‐length (GHRfl) or exon 3 deleted (GHRd3). An association of these isoforms has been found with small for gestational age (SGA) infants but does not influence adult height. The role of this polymorphism in the birth size spectrum in the general population is unclear.

Collaboration


Dive into the Gudrun E. Moore's collaboration.

Top Co-Authors

Avatar

Philip Stanier

University College London

View shared research outputs
Top Co-Authors

Avatar

Anna Thomas

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar

Eugene Healy

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Miho Ishida

University College London

View shared research outputs
Top Co-Authors

Avatar

Nj Sebire

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V.A. Kinsler

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar

Estelle Chanudet

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar

Deborah Morrogh

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar

Erwin Pauws

UCL Institute of Child Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge