Gufa Lin
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gufa Lin.
Developmental Biology | 2008
Gufa Lin; Jonathan M.W. Slack
We have investigated the requirement for the FGF and Wnt/beta-catenin pathways for Xenopus tadpole tail regeneration. Pathways were modified either by treatment with small molecules or by induction of transgene expression with heat shocks. Regeneration is inhibited by treatment with the FGF inhibitor SU5402, or by activation of a dominant negative FGF receptor, or by activation of expression of the Wnt inhibitor Dkk1. Agents promoting Wnt activity: the small molecule BIO, or a constitutively active form of beta-catenin, led to an increased growth rate. Combination of a Wnt activator with FGF inhibitor suppressed regeneration, while combination of a Wnt inhibitor with a FGF activator allowed regeneration. This suggests that the Wnt activity lies upstream of the FGF activity. Expression of both Wnt and FGF components was inhibited by activation of noggin, suggesting that BMP signalling lies upstream of both Wnt and FGF. The results show that the molecular mechanism of Xenopus tadpole tail regeneration is surprisingly similar to that of the Xenopus limb bud and the zebrafish caudal fin, despite the difference of anatomy.
Development | 2006
Ying Chen; Gufa Lin; Jonathan M.W. Slack
The tail of the Xenopus tadpole will regenerate completely after transection. Much of the mass of the regenerate is composed of skeletal muscle, but there has been some uncertainty about the source of the new myofibres. Here, we show that the growing tail contains many muscle satellite cells. They are active in DNA replication, whereas the myonuclei are not. As in mammals, the satellite cells express pax7. We show that a domain-swapped construct, pax7EnR, can antagonize pax7 function. Transgenic tadpoles were prepared containing pax7EnR driven by a heat-inducible promoter. When induced, this reduces the proportion of satellite cells formed in the regenerate. A second amputation of the resulting tails yielded second regenerates containing notochord and spinal cord but little or no muscle. This shows that inhibition of pax7 action does not prevent differentiation of satellite cells to myofibres, but it does prevent their maintenance as a stem cell population.
Cellular and Molecular Life Sciences | 2008
Jonathan M.W. Slack; Gufa Lin; Ying Chen
Abstract.The Xenopus tadpole is a favourable organism for regeneration research because it is suitable for a wide range of micromanipulative procedures and for a wide range of transgenic methods. Combination of these techniques enables genes to be activated or inhibited at specific times and in specific tissue types to a much higher degree than in any other organism capable of regeneration. Regenerating systems include the tail, the limb buds and the lens. The study of tail regeneration has shown that each tissue type supplies the cells for its own replacement: there is no detectable de-differentiation or metaplasia. Signalling systems needed for regeneration include the BMP and Notch signalling pathways, and perhaps also the Wnt and FGF pathways. The limb buds will regenerate completely at early stages, but not once they are fully differentiated. This provides a good opportunity to study the loss of regenerative ability using transgenic methods. (Part of a Multi-author Review)
Cellular and Molecular Life Sciences | 2007
Jonathan M.W. Slack; Gufa Lin; Ying Chen
Abstract.The Xenopus tadpole is a favourable organism for regeneration research because it is suitable for a wide range of micromanipulative procedures and for a wide range of transgenic methods. Combination of these techniques enables genes to be activated or inhibited at specific times and in specific tissue types to a much higher degree than in any other organism capable of regeneration. Regenerating systems include the tail, the limb buds and the lens. The study of tail regeneration has shown that each tissue type supplies the cells for its own replacement: there is no detectable de-differentiation or metaplasia. Signalling systems needed for regeneration include the BMP and Notch signalling pathways, and perhaps also the Wnt and FGF pathways. The limb buds will regenerate completely at early stages, but not once they are fully differentiated. This provides a good opportunity to study the loss of regenerative ability using transgenic methods. (Part of a Multi-author Review)
BMC Developmental Biology | 2007
Gufa Lin; Ying Chen; Jonathan M.W. Slack
BackgroundAfter amputation of the Xenopus tadpole tail, a functionally competent new tail is regenerated. It contains spinal cord, notochord and muscle, each of which has previously been shown to derive from the corresponding tissue in the stump. The regeneration of the neural crest derivatives has not previously been examined and is described in this paper.ResultsLabelling of the spinal cord by electroporation, or by orthotopic grafting of transgenic tissue expressing GFP, shows that no cells emigrate from the spinal cord in the course of regeneration.There is very limited regeneration of the spinal ganglia, but new neurons as well as fibre tracts do appear in the regenerated spinal cord and the regenerated tail also contains abundant peripheral innervation.The regenerated tail contains a normal density of melanophores. Cell labelling experiments show that melanophores do not arise from the spinal cord during regeneration, nor from the mesenchymal tissues of the skin, but they do arise by activation and proliferation of pre-existing melanophore precursors. If tails are prepared lacking melanophores, then the regenerates also lack them.ConclusionOn regeneration there is no induction of a new neural crest similar to that seen in embryonic development. However there is some regeneration of neural crest derivatives. Abundant melanophores are regenerated from unpigmented precursors, and, although spinal ganglia are not regenerated, sufficient sensory systems are produced to enable essential functions to continue.
The Journal of Neuroscience | 2015
Vaibhav P. Pai; Joan M. Lemire; Jean François Paré; Gufa Lin; Ying Chen; Michael Levin
Biophysical forces play important roles throughout embryogenesis, but the roles of spatial differences in cellular resting potentials during large-scale brain morphogenesis remain unknown. Here, we implicate endogenous bioelectricity as an instructive factor during brain patterning in Xenopus laevis. Early frog embryos exhibit a characteristic hyperpolarization of cells lining the neural tube; disruption of this spatial gradient of the transmembrane potential (Vmem) diminishes or eliminates the expression of early brain markers, and causes anatomical mispatterning of the brain, including absent or malformed regions. This effect is mediated by voltage-gated calcium signaling and gap-junctional communication. In addition to cell-autonomous effects, we show that hyperpolarization of transmembrane potential (Vmem) in ventral cells outside the brain induces upregulation of neural cell proliferation at long range. Misexpression of the constitutively active form of Notch, a suppressor of neural induction, impairs the normal hyperpolarization pattern and neural patterning; forced hyperpolarization by misexpression of specific ion channels rescues brain defects induced by activated Notch signaling. Strikingly, hyperpolarizing posterior or ventral cells induces the production of ectopic neural tissue considerably outside the neural field. The hyperpolarization signal also synergizes with canonical reprogramming factors (POU and HB4), directing undifferentiated cells toward neural fate in vivo. These data identify a new functional role for bioelectric signaling in brain patterning, reveal interactions between Vmem and key biochemical pathways (Notch and Ca2+ signaling) as the molecular mechanism by which spatial differences of Vmem regulate organogenesis of the vertebrate brain, and suggest voltage modulation as a tractable strategy for intervention in certain classes of birth defects.
Developmental Cell | 2013
Gufa Lin; Ying Chen; Jonathan M.W. Slack
The frog Xenopus can normally regenerate its limbs at early developmental stages but loses the ability during metamorphosis. This behavior provides a potential gain-of-function model for measures that can enhance limb regeneration. Here, we show that frog limbs can be caused to form multidigit regenerates after receiving transplants of larval limb progenitor cells. It is necessary to activate Wnt/β-catenin signaling in the cells and to add Sonic hedgehog, FGF10, and thymosin β4. These factors promote survival and growth of the grafted cells and also provide pattern information. The eventual regenerates are not composed solely of donor tissue; the host cells also make a substantial contribution despite their lack of regeneration competence. Cells from adult frog legs or from regenerating tadpole tails do not promote limb regeneration, demonstrating the necessity for limb progenitor cells. These findings have obvious implications for the development of a technology to promote limb regeneration in mammals.
Developmental Biology | 2014
Xiaozhong Shi; Jai Richard; Katie M. Zirbes; Wuming Gong; Gufa Lin; Michael Kyba; Jamie A. Thomson; Naoko Koyano-Nakagawa; Daniel J. Garry
Regulatory mechanisms that govern lineage specification of the mesodermal progenitors to become endothelial and hematopoietic cells remain an area of intense interest. Both Ets and Gata factors have been shown to have important roles in the transcriptional regulation in endothelial and hematopoietic cells. We previously reported Etv2 as an essential regulator of vasculogenesis and hematopoiesis. In the present study, we demonstrate that Gata2 is co-expressed and interacts with Etv2 in the endothelial and hematopoietic cells in the early stages of embryogenesis. Our studies reveal that Etv2 interacts with Gata2 in vitro and in vivo. The protein-protein interaction between Etv2 and Gata2 is mediated by the Ets and Gata domains. Using the embryoid body differentiation system, we demonstrate that co-expression of Gata2 augments the activity of Etv2 in promoting endothelial and hematopoietic lineage differentiation. We also identify Spi1 as a common downstream target gene of Etv2 and Gata2. We provide evidence that Etv2 and Gata2 bind to the Spi1 promoter in vitro and in vivo. In summary, we propose that Gata2 functions as a cofactor of Etv2 in the transcriptional regulation of mesodermal progenitors during embryogenesis.
FEBS Letters | 2003
Xin Geng; Lei Xiao; Gufa Lin; Ruiying Hu; Jin Hu Wang; Ralph A.W. Rupp; Xiaoyan Ding
Though the Wnt/β‐catenin signaling pathway is known to play key roles during Xenopus axis specification, whether it signals exclusively through Lef/Tcf transcription factors in this process remains unclear. To investigate this issue, we generated transgenic frog embryos expressing green fluorescent protein (GFP) driven by a Lef/Tcf‐dependent and Wnt/β‐catenin‐responsive promoter. This promoter is highly sensitive and even detects maternal β‐catenin activity prior to the large‐scale transcription of zygotic genes. Unexpectedly, GFP expression was observed only in some, but not all, known Wnt/β‐catenin‐positive territories in Xenopus early development. Furthermore, ubiquitous expression of dominant Lef‐1 protein variants from transgenes revealed that zygotic Lef/Tcf activity is required for the ventroposterior development of Xenopus embryos. In summary, our results suggest that endogenous Wnt/β‐catenin activity does not result in obligatory Lef/Tcf‐dependent gene activation, and that the ventroposteriorizing activity of zygotic Wnt‐8 signaling is mediated by Lef/Tcf proteins.
Developmental Dynamics | 2003
Gufa Lin; Xin Geng; Ying Chen; Bin Qu; Fubin Wang; Ruiying Hu; Xiaoyan Ding
Myf‐5, a member of the muscle regulatory factor family of transcription factors, plays an important role in the determination, development, and differentiation of the skeletal muscle. Factors that regulate the expression of myf‐5 itself are not well understood. We show here that a T‐box binding site in the Xenopus myf‐5 promoter mediated the activation of myf‐5 expression through specific interaction with nuclear proteins of gastrula embryos. The T‐box binding site could be bound by and respond to T‐box proteins. T‐box genes could induce Xmyf‐5. The results suggest that T‐box proteins are involved in the specification of myogenic mesoderm and muscle development.