Guido Burkard
University of Konstanz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guido Burkard.
Physical Review B | 1999
Guido Burkard; Daniel Loss
We consider a quantum-gate mechanism based on electron spins in coupled semiconductor quantum dots. Such gates provide a general source of spin entanglement and can be used for quantum computers. We determine the exchange coupling J in the effective Heisenberg model as a function of magnetic (B) and electric fields, and of the interdot distance a within the Heitler-London approximation of molecular physics. This result is refined by using sp hybridization, and by the Hund-Mulliken molecular-orbit approach, which leads to an extended Hubbard description for the two-dot system that shows a remarkable dependence on B and a due to the long-range Coulomb interaction. We find that the exchange J changes sign at a finite field (leading to a pronounced jump in the magnetization) and then decays exponentially. The magnetization and the spin susceptibilities of the coupled dots are calculated. We show that the dephasing due to nuclear spins in GaAs can be strongly suppressed by dynamical nuclear-spin polarization and/or by magnetic fields.
Nature Physics | 2007
Bjoern Trauzettel; D. V. Bulaev; Daniel Loss; Guido Burkard
The main characteristics of good qubits are long coherence times in combination with fast operating times. It is well known that carbon-based materials could increase the coherence times of spin qubits, which are among the most developed solid-state qubits. Here, we propose how to form spin qubits in graphene quantum dots. A crucial requirement to achieve this goal is to find quantum-dot states where the usual valley degeneracy in bulk graphene is lifted. We show that this problem can be avoided in quantum dots based on ribbons of graphene with armchair boundaries. The most remarkable new feature of the proposed spin qubits is that, in an array of many qubits, it is possible to couple any two of them via Heisenberg exchange with the others being decoupled by detuning. This unique feature is a direct consequence of the quasi-relativistic spectrum of graphene.
arXiv: Mesoscale and Nanoscale Physics | 2015
Andor Kormányos; Guido Burkard; Martin Gmitra; Jaroslav Fabian; Viktor Zólyomi; Neil Drummond; Vladimir I. Fal’ko
We present k.p Hamiltonians parametrized by ab initio density functional theory calculations to describe the dispersion of the valence and conduction bands at their extrema (the K , Q , Γ , and M points of the hexagonal Brillouin zone) in atomic crystals of semiconducting monolayer transition metal dichalcogenides (TMDCs). We discuss the parametrization of the essential parts of the k.p[ Hamiltonians for MoS2 , MoSe2 , MoTe2 , WS2 , WSe2 , and WTe2 , including the spin-splitting and spin-polarization of the bands, and we briefly review the vibrational properties of these materials. We then use k.p theory to analyse optical transitions in two-dimensional TMDCs over a broad spectral range that covers the Van Hove singularities in the band structure (the M points). We also discuss the visualization of scanning tunnelling microscopy maps.
Physical Review B | 2013
Andor Kormányos; Viktor Zólyomi; Neil Drummond; Péter Rakyta; Guido Burkard; Vladimir I. Fal'ko
We use a combined ab initio calculations and k · p theory based approach to derive a low-energy effective Hamiltonian for monolayer MoS2 at the K point of the Brillouin zone. It captures the features which are present in first-principles calculations but not explained by the theory of Xiao et al. [Phys Rev Lett 108, 196802 (2012)], namely the trigonal warping of the valence and conduction bands, the electron-hole symmetry breaking, and the spin splitting of the conduction band. We also consider other points in the Brillouin zone which might be important for transport properties. Our findings lead to a more quantitative understanding of the properties of this material in the ballistic limit.
Physical Review B | 2000
Guido Burkard; Georg Seelig; Daniel Loss
We determine the spin-exchange coupling J between two electrons located in two vertically tunnel-coupled quantum dots, and its variation when magnetic (B) and electric (E) fields (both in-plane and perpendicular) are applied. We predict a strong decrease of J as the in-plane B field is increased, mainly due to orbital compression. Combined with the Zeeman splitting, this leads to a singlet-triplet crossing, which can be observed as a pronounced jump in the magnetization at in-plane fields of a few T, and perpendicular fields of the order of 10 T for typical self-assembled dots. We use harmonic potentials to model the confining of electrons, and calculate the exchange J using the Heitler-London and Hund-Mulliken techniques, including the long-range Coulomb interaction With our results we provide experimental criteria for the distinction of singlet and triplet states, and therefore for microscopic spin measurements. In the case where dots of different sizes are coupled, we present a simple method to switch the spin coupling on and off with exponential sensitivity using an in-plane electric field. Switching the spin coupling is essential for quantum computation using electronic spins as qubits.
Physical Review Letters | 2005
Patrice Bertet; Irinel Chiorescu; Guido Burkard; Kouichi Semba; C.J.P.M. Harmans; J.E. Mooij
We have studied the dephasing of a superconducting flux qubit coupled to a dc-SQUID based oscillator. By varying the bias conditions of both circuits we were able to tune their effective coupling strength. This allowed us to measure the effect of such a controllable and well-characterized environment on the qubit coherence. We can quantitatively account for our data with a simple model in which thermal fluctuations of the photon number in the oscillator are the limiting factor. In particular, we observe a strong reduction of the dephasing rate whenever the coupling is tuned to zero. At the optimal point we find a large spin-echo decay time of .
Physical Review Letters | 2002
J. Carlos Egues; Guido Burkard; Daniel Loss
We study shot noise for spin-polarized currents and entangled electron pairs in a four-probe (beam-splitter) geometry with a local Rashba spin-orbit (s-o) interaction in the incoming leads. Within the scattering formalism we find that shot noise exhibits Rashba-induced oscillations with continuous bunching and antibunching. We show that entangled states and triplet states can be identified via their Rashba phase in noise measurements. For two-channel leads, we find an additional spin rotation due to s-o induced interband coupling which enhances spin control. We show that the s-o interaction deter-mines the Fano factor, which provides a direct way to measure the Rashba coupling constant via noise.
Physical Review B | 2000
Guido Burkard; Daniel Loss; Eugene V. Sukhorukov
Addressing the feasibility of quantum communication with entangled electrons in an interacting many-body environment, we propose an interference experiment using a scattering setup with an entangler and a beam splitter. It is shown that, due to electron-electron interaction, the spin correlation of the entangled singlet and triplet states is reduced by z(F)(2) in a conductor described by Fermi liquid theory. We calculate the quasiparticle weight factor z(F) for a two-dimensional electron system. The current noise for electronic singlet states turns out to be enhanced (bunching behavior), while it is reduced for triplet states (antibunching). Within standard scattering theory, we find that the Fano factor (noise-to-current ratio) for singlets is twice as large as for independent classical particles and is reduced to zero for triplets.
Physical Review X | 2014
Andor Kormányos; Viktor Zólyomi; Neil Drummond; Guido Burkard
We derive an effective Hamiltonian that describes the dynamics of electrons in the conduction band of monolayer transition metal dichalcogenides (TMDC) in the presence of perpendicular electric and magnetic fields. We discuss in detail both the intrinsic and the Bychkov-Rashba spin-orbit coupling induced by an external electric field. We point out interesting differences in the spin-split conduction band between different TMDC compounds. An important consequence of the strong intrinsic spin-orbit coupling is an effective out-of-plane g factor for the electrons that differs from the free-electron g factor g~=2. We identify a new term in the Hamiltonian of the Bychkov-Rashba spin-orbit coupling that does not exist in III-V semiconductors. Using first-principles calculations, we give estimates of the various parameters appearing in the theory. Finally, we consider quantum dots formed in TMDC materials and derive an effective Hamiltonian that allows us to calculate the magnetic field dependence of the bound states in the quantum dots. We find that all states are both valley and spin split, which suggests that these quantum dots could be used as valley-spin filters. We explore the possibility of using spin and valley states in TMDCs as quantum bits, and conclude that, due to the relatively strong intrinsic spin-orbit splitting in the conduction band, the most realistic option appears to be a combined spin-valley (Kramers) qubit at low magnetic fields.
Applied Physics Letters | 2003
J. Carlos Egues; Guido Burkard; Daniel Loss
We consider a two-channel spin transistor with weak spin-orbit induced interband coupling. We show that the coherent transfer of carriers between the coupled channels gives rise to an additional spin rotation. We calculate the corresponding spin-resolved current in a Datta–Das geometry and show that a weak interband mixing leads to enhanced spin control.