Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas H. Vanderford is active.

Publication


Featured researches published by Thomas H. Vanderford.


Nature Medicine | 2008

Divergent TLR7 and TLR9 signaling and type I interferon production distinguish pathogenic and nonpathogenic AIDS virus infections

Judith N Mandl; Ashley P. Barry; Thomas H. Vanderford; Natalia Kozyr; Rahul Chavan; Sara Klucking; Franck J. Barrat; Robert L. Coffman; Silvija I. Staprans; Mark B. Feinberg

Pathogenic HIV infections of humans and simian immunodeficiency virus (SIV) infections of rhesus macaques are characterized by generalized immune activation and progressive CD4+ T cell depletion. In contrast, natural reservoir hosts for SIV, such as sooty mangabeys, do not progress to AIDS and show a lack of aberrant immune activation and preserved CD4+ T cell populations, despite high levels of SIV replication. Here we show that sooty mangabeys have substantially reduced levels of innate immune system activation in vivo during acute and chronic SIV infection and that sooty mangabey plasmacytoid dendritic cells (pDCs) produce markedly less interferon-α in response to SIV and other Toll-like receptor 7 and 9 ligands ex vivo. We propose that chronic stimulation of pDCs by SIV and HIV in non-natural hosts may drive the unrelenting immune system activation and dysfunction underlying AIDS progression. Such a vicious cycle of continuous virus replication and immunopathology is absent in natural sooty mangabey hosts.


Science | 2012

Natural SIV hosts: showing AIDS the door.

Ann Chahroudi; Steven E. Bosinger; Thomas H. Vanderford; Mirko Paiardini; Guido Silvestri

Lessons from SIV HIV infection in humans is a chronic infection and, if left untreated, the majority of infected individuals will succumb to AIDS. Many species of African nonhuman primates are chronically infected with simian immunodeficiency virus (SIV); however, in the majority of these species, the animals remain healthy despite the presence of high viral loads. Chahroudi et al. (p. 1188) review the underlying immune mechanisms that help protect natural hosts from progressing to AIDS and how these responses differ from what is observed in HIV-infected humans and SIV-infected nonhuman primate species that develop AIDS. Many species of African nonhuman primates are naturally infected with simian immunodeficiency viruses (SIVs) in the wild and in captivity. In contrast to HIV-infected humans, these natural SIV hosts typically do not develop AIDS, despite chronic infection with a highly replicating virus. In this Review, we discuss the most recent advances on the mechanisms of protection from disease progression in natural SIV hosts, with emphasis on how they differ from pathogenic HIV/SIV infections of humans and rhesus macaques. These mechanisms include: (i) resolution of immune activation after acute infection, (ii) restricted pattern of target cell infection, and (iii) protection from mother-to-infant transmission. We highlight the areas that should be pursued in future studies, focusing on potential applications for the treatment and prevention of HIV infection.


Journal of Clinical Investigation | 2014

Immune activation alters cellular and humoral responses to yellow fever 17D vaccine

Enoch Muyanja; Aloysius Ssemaganda; Pearline Ngauv; Rafael Cubas; Hélène Perrin; Divya Srinivasan; Glenda Canderan; Benton Lawson; Jakub Kopycinski; Amanda S. Graham; Dawne K. Rowe; Michaela J. Smith; Denis Gaucher; Sharon Isern; Scott F. Michael; Guido Silvestri; Thomas H. Vanderford; Erika Castro; Giuseppe Pantaleo; Joel Singer; Jill Gillmour; Noah Kiwanuka; Annet Nanvubya; Claudia Schmidt; Josephine Birungi; Josephine H. Cox; Elias K. Haddad; Pontiano Kaleebu; Patricia Fast; Rafick-Pierre Sekaly

BACKGROUND Defining the parameters that modulate vaccine responses in African populations will be imperative to design effective vaccines for protection against HIV, malaria, tuberculosis, and dengue virus infections. This study aimed to evaluate the contribution of the patient-specific immune microenvironment to the response to the licensed yellow fever vaccine 17D (YF-17D) in an African cohort. METHODS We compared responses to YF-17D in 50 volunteers in Entebbe, Uganda, and 50 volunteers in Lausanne, Switzerland. We measured the CD8+ T cell and B cell responses induced by YF-17D and correlated them with immune parameters analyzed by flow cytometry prior to vaccination. RESULTS We showed that YF-17D-induced CD8+ T cell and B cell responses were substantially lower in immunized individuals from Entebbe compared with immunized individuals from Lausanne. The impaired vaccine response in the Entebbe cohort associated with reduced YF-17D replication. Prior to vaccination, we observed higher frequencies of exhausted and activated NK cells, differentiated T and B cell subsets and proinflammatory monocytes, suggesting an activated immune microenvironment in the Entebbe volunteers. Interestingly, activation of CD8+ T cells and B cells as well as proinflammatory monocytes at baseline negatively correlated with YF-17D-neutralizing antibody titers after vaccination. Additionally, memory T and B cell responses in preimmunized volunteers exhibited reduced persistence in the Entebbe cohort but were boosted by a second vaccination. CONCLUSION Together, these results demonstrate that an activated immune microenvironment prior to vaccination impedes efficacy of the YF-17D vaccine in an African cohort and suggest that vaccine regimens may need to be boosted in African populations to achieve efficient immunity. TRIAL REGISTRATION Registration is not required for observational studies. FUNDING This study was funded by Canadas Global Health Research Initiative, Defense Threat Reduction Agency, National Institute of Allergy and Infectious Diseases, Bill & Melinda Gates Foundation, and United States Agency for International Development.


Journal of Virology | 2012

Dynamics of Simian Immunodeficiency Virus SIVmac239 Infection in Pigtail Macaques

Nichole R. Klatt; Thomas H. Vanderford; Carol L. Vinton; Jessica C. Engram; Richard M. Dunham; Heather E. Cronise; Joanna Swerczek; Bernard A. P. Lafont; Louis J. Picker; Guido Silvestri; Jason M. Brenchley

ABSTRACT Pigtail macaques (PTM) are an excellent model for HIV research; however, the dynamics of simian immunodeficiency virus (SIV) SIVmac239 infection in PTM have not been fully evaluated. We studied nine PTM prior to infection, during acute and chronic SIVmac239 infections, until progression to AIDS. We found PTM manifest clinical AIDS more rapidly than rhesus macaques (RM), as AIDS-defining events occurred at an average of 42.17 weeks after infection in PTM compared to 69.56 weeks in RM (P = 0.0018). However, increased SIV progression was not associated with increased viremia, as both peak and set-point plasma viremias were similar between PTM and RM (P = 0.7953 and P = 0.1006, respectively). Moreover, this increased disease progression was not associated with rapid CD4+ T cell depletion, as CD4+ T cell decline resembled other SIV/human immunodeficiency virus (HIV) models. Since immune activation is the best predictor of disease progression during HIV infection, we analyzed immune activation by turnover of T cells by BrdU decay and Ki67 expression. We found increased levels of turnover prior to SIV infection of PTM compared to that observed with RM, which may contribute to their increased disease progression rate. These data evaluate the kinetics of SIVmac239-induced disease progression and highlight PTM as a model for HIV infection and the importance of immune activation in SIV disease progression.


Journal of Immunology | 2014

Divergent CD4+ T Memory Stem Cell Dynamics in Pathogenic and Nonpathogenic Simian Immunodeficiency Virus Infections

Emily K. Cartwright; Colleen S. McGary; Barbara Cervasi; Luca Micci; Benton Lawson; Sarah T. C. Elliott; Ronald G. Collman; Steven E. Bosinger; Mirko Paiardini; Thomas H. Vanderford; Ann Chahroudi; Guido Silvestri

Recent studies have identified a subset of memory T cells with stem cell-like properties (TSCM) that include increased longevity and proliferative potential. In this study, we examined the dynamics of CD4+ TSCM during pathogenic SIV infection of rhesus macaques (RM) and nonpathogenic SIV infection of sooty mangabeys (SM). Whereas SIV-infected RM show selective numeric preservation of CD4+ TSCM, SIV infection induced a complex perturbation of these cells defined by depletion of CD4+CCR5+ TSCM, increased rates of CD4+ TSCM proliferation, and high levels of direct virus infection. The increased rates of CD4+ TSCM proliferation in SIV-infected RM correlated inversely with the levels of central memory CD4+ T cells. In contrast, nonpathogenic SIV infection of SM evidenced preservation of both CD4+ TSCM and CD4+ central memory T cells, with normal levels of CD4+ TSCM proliferation, and lack of selective depletion of CD4+CCR5+ TSCM. Importantly, SIV DNA was below the detectable limit in CD4+ TSCM from 8 of 10 SIV-infected SM. We propose that increased proliferation and infection of CD4+ TSCM may contribute to the pathogenesis of SIV infection in RM.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Replicative fitness of transmitted HIV-1 drives acute immune activation, proviral load in memory CD4+ T cells, and disease progression

Daniel T. Claiborne; Jessica L. Prince; Eileen Scully; Gladys Macharia; Luca Micci; Benton Lawson; Jakub Kopycinski; Martin J. Deymier; Thomas H. Vanderford; Krystelle Nganou-Makamdop; Zachary Ende; Kelsie Brooks; Jianming Tang; Tianwei Yu; Shabir Lakhi; William Kilembe; Guido Silvestri; Paul A. Goepfert; Matthew Price; Susan Allen; Mirko Paiardini; Marcus Altfeld; Jill Gilmour; Eric Hunter

Significance HIV infection is associated with elevated inflammation and aberrant cellular immune activation. Indeed, the activation status of an HIV-infected individual is often more predictive of disease trajectory than viral load. Here, we highlight the importance of the replicative fitness of the transmitted viral variant in driving an early inflammatory state, characterized by T-cell activation and immune dysfunction. This impact on T-cell homeostasis is independent of protective host immune response genes and viral load. Highly replicating transmitted variants were also significantly more efficient at infecting memory CD4+ T cells, a population important for maintaining the latent viral reservoir. Together, these data provide a mechanism whereby viral replicative fitness acts as a major determinant of disease progression and persistence. HIV-1 infection is characterized by varying degrees of chronic immune activation and disruption of T-cell homeostasis, which impact the rate of disease progression. A deeper understanding of the factors that influence HIV-1–induced immunopathology and subsequent CD4+ T-cell decline is critical to strategies aimed at controlling or eliminating the virus. In an analysis of 127 acutely infected Zambians, we demonstrate a dramatic and early impact of viral replicative capacity (vRC) on HIV-1 immunopathogenesis that is independent of viral load (VL). Individuals infected with high-RC viruses exhibit a distinct inflammatory cytokine profile as well as significantly elevated T-cell activation, proliferation, and CD8+ T-cell exhaustion, during the earliest months of infection. Moreover, the vRC of the transmitted virus is positively correlated with the magnitude of viral burden in naive and central memory CD4+ T-cell populations, raising the possibility that transmitted viral phenotypes may influence the size of the initial latent viral reservoir. Taken together, these findings support an unprecedented role for the replicative fitness of the founder virus, independent of host protective genes and VL, in influencing multiple facets of HIV-1–related immunopathology, and that a greater focus on this parameter could provide novel approaches to clinical interventions.


Journal of Virology | 2012

Cloning and analysis of sooty mangabey alternative coreceptors that support simian immunodeficiency virus SIVsmm entry independently of CCR5.

Sarah T. C. Elliott; Nadeene E. Riddick; Nicholas Francella; Mirko Paiardini; Thomas H. Vanderford; Bing Li; Cristian Apetrei; Donald L. Sodora; Cynthia A. Derdeyn; Guido Silvestri; Ronald G. Collman

ABSTRACT Natural host sooty mangabeys (SM) infected with simian immunodeficiency virus SIVsmm do not develop AIDS despite high viremia. SM and other natural hosts express very low levels of CCR5 on CD4+ T cells, and we recently showed that SIVsmm infection and robust replication occur in vivo in SM genetically lacking CCR5, indicating the use of additional entry pathways. SIVsmm uses several alternative coreceptors of human origin in vitro, but which molecules of SM origin support entry is unknown. We cloned a panel of putative coreceptors from SM and tested their ability to mediate infection, in conjunction with smCD4, by pseudotypes carrying Envs from multiple SIVsmm subtypes. smCXCR6 supported efficient infection by all SIVsmm isolates with entry levels comparable to those for smCCR5, and smGPR15 enabled entry by all isolates at modest levels. smGPR1 and smAPJ supported low and variable entry, whereas smCCR2b, smCCR3, smCCR4, smCCR8, and smCXCR4 were not used by most isolates. In contrast, SIVsmm from rare infected SM with profound CD4+ T cell loss, previously reported to have expanded use of human coreceptors, including CXCR4, used smCXCR4, smCXCR6, and smCCR5 efficiently and also exhibited robust entry through smCCR3, smCCR8, smGPR1, smGPR15, and smAPJ. Entry was similar with both known alleles of smCD4. These alternative coreceptors, particularly smCXCR6 and smGPR15, may support virus replication in SM that have restricted CCR5 expression as well as SM genetically lacking CCR5. Defining expression of these molecules on SM CD4+ subsets may delineate distinct natural host target cell populations capable of supporting SIVsmm replication without CD4+ T cell loss.


PLOS Pathogens | 2014

Target cell availability, rather than breast milk factors, dictates mother-to-infant transmission of SIV in sooty mangabeys and rhesus macaques.

Ann Chahroudi; Emily K. Cartwright; S. Thera Lee; Maud Mavigner; Diane G. Carnathan; Benton Lawson; Paul M. Carnathan; Tayebeh Hashempoor; Megan K. Murphy; Tracy Meeker; Stephanie Ehnert; Christopher Souder; James G. Else; Joyce Cohen; Ronald G. Collman; Thomas H. Vanderford; Sallie R. Permar; Cynthia A. Derdeyn; Francois Villinger; Guido Silvestri

Mother-to-infant transmission (MTIT) of HIV is a serious global health concern, with over 300,000 children newly infected in 2011. SIV infection of rhesus macaques (RMs) results in similar rates of MTIT to that of HIV in humans. In contrast, SIV infection of sooty mangabeys (SMs) rarely results in MTIT. The mechanisms underlying protection from MTIT in SMs are unknown. In this study we tested the hypotheses that breast milk factors and/or target cell availability dictate the rate of MTIT in RMs (transmitters) and SMs (non-transmitters). We measured viral loads (cell-free and cell-associated), levels of immune mediators, and the ability to inhibit SIV infection in vitro in milk obtained from lactating RMs and SMs. In addition, we assessed the levels of target cells (CD4+CCR5+ T cells) in gastrointestinal and lymphoid tissues, including those relevant to breastfeeding transmission, as well as peripheral blood from uninfected RM and SM infants. We found that frequently-transmitting RMs did not have higher levels of cell-free or cell-associated viral loads in milk compared to rarely-transmitting SMs. Milk from both RMs and SMs moderately inhibited in vitro SIV infection, and presence of the examined immune mediators in these two species did not readily explain the differential rates of transmission. Importantly, we found that the percentage of CD4+CCR5+ T cells was significantly lower in all tissues in infant SMs as compared to infant RMs despite robust levels of CD4+ T cell proliferation in both species. The difference between the frequently-transmitting RMs and rarely-transmitting SMs was most pronounced in CD4+ memory T cells in the spleen, jejunum, and colon as well as in central and effector memory CD4+ T cells in the peripheral blood. We propose that limited availability of SIV target cells in infant SMs represents a key evolutionary adaptation to reduce the risk of MTIT in SIV-infected SMs.


Journal of Virology | 2015

Differential Impact of In Vivo CD8+ T Lymphocyte Depletion in Controller versus Progressor Simian Immunodeficiency Virus-Infected Macaques

Ankita Chowdhury; Timothy L. Hayes; Steven E. Bosinger; Benton Lawson; Thomas H. Vanderford; Joern E. Schmitz; Mirko Paiardini; Michael R. Betts; Ann Chahroudi; Jacob D. Estes; Guido Silvestri

ABSTRACT Numerous studies have demonstrated that CD8+ T lymphocytes suppress virus replication during human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) infection. However, the mechanisms underlying this activity of T cells remain incompletely understood. Here, we conducted CD8+ T lymphocyte depletion in 15 rhesus macaques (RMs) infected intravenously (i.v.) with SIVmac239. At day 70 postinfection, the animals (10 progressors with high viremia and 5 controllers with low viremia) were CD8 depleted by i.v. administration of the antibody M-T807R1. As expected, CD8 depletion resulted in increased virus replication, more prominently in controllers than progressors, which correlated inversely with predepletion viremia. Of note, the feature of CD8+ T lymphocyte predepletion that correlated best with the increase in viremia postdepletion was the level of CD8+ T-bet+ lymphocytes. We next found that CD8 depletion resulted in a homogenous increase of SIV RNA in superficial and mesenteric lymph nodes, spleen, and the gastrointestinal tract of both controllers and progressors. Interestingly, the level of SIV DNA increased postdepletion in both CD4+ central memory T lymphocytes (TCM) and CD4+ effector memory T lymphocytes (TEM) in progressor RMs but decreased in the CD4+ TCM of 4 out of 5 controllers. Finally, we found that CD8 depletion is associated with a greater increase in CD4+ T lymphocyte activation (measured by Ki-67 expression) in controllers than in progressors. Overall, these data reveal a differential impact of CD8+ T lymphocyte depletion between controller and progressor SIV-infected RMs, emphasizing the complexity of the in vivo antiviral role of CD8+ T lymphocytes. IMPORTANCE In this study, we further dissect the impact of CD8+ T lymphocytes on HIV/SIV replication during SIV infection. CD8+ T lymphocyte depletion leads to a relatively homogenous increase in viral replication in peripheral blood and tissues. CD8+ T lymphocyte depletion resulted in a more prominent increase in viral loads and CD4+ T lymphocyte activation in controllers than in progressors. Interestingly, we found T-bet expression on CD8+ T lymphocytes to be the best predictor of viral load increase following depletion. The levels of SIV DNA increase postdepletion in both CD4+ TCM and TEM in progressor RMs but decrease in the CD4+ TCM of controllers. The findings described in this study provide key insights into the differential functions of CD8+ T lymphocytes in controller and progressor RMs.


PLOS Pathogens | 2013

Intact Type I Interferon Production and IRF7 Function in Sooty Mangabeys

Steven E. Bosinger; Zachary P. Johnson; Kathryn A. Folkner; Nirav B. Patel; Tayebeh Hashempour; Simon P. Jochems; Perla M. Del Rio Estrada; Mirko Paiardini; Rongtuan Lin; Thomas H. Vanderford; John Hiscott; Guido Silvestri

In contrast to pathogenic HIV/SIV infections of humans and rhesus macaques (RMs), natural SIV infection of sooty mangabeys (SMs) is typically non-pathogenic despite high viremia. Several studies suggested that low immune activation and relative resistance of CD4+ central memory T-cells from virus infection are mechanisms that protect SMs from AIDS. In 2008 it was reported that plasmacytoid dendritic cells (pDCs) of SMs exhibit attenuated interferon-alpha (IFN-α) responses to TLR7/9 ligands in vitro, and that species-specific amino acid substitutions in SM Interferon Regulatory Factor-7 (IRF7) are responsible for this observation. Based on these findings, these authors proposed that “muted” IFN-α responses are responsible for the benign nature of SIV infection in SMs. However, other studies indicated that acutely SIV-infected SMs show robust IFN-α responses and marked upregulation of Interferon Stimulated Genes (ISGs). To investigate this apparent disparity, we first examined the role of the reported IRF7 amino acid substitutions in SMs. To this end, we sequenced all IRF7 exons in 16 breeders, and exons displaying variability (exons 2,3,5,6,7,8) in the remainder of the colony (177 animals). We found that the reported Ser-Gly substitution at position 191 was a sequencing error, and that several of the remaining substitutions represent only minor alleles. In addition, functional assays using recombinant SM IRF7 showed no defect in its ability to translocate in the nucleus and drive transcription from an IFN-α promoter. Furthermore, in vitro stimulation of SM peripheral blood mononuclear cells with either the TLR7 agonist CL097 or SIVmac239 induced an 500–800-fold induction of IFN-α and IFN-β mRNA, and levels of IFN-α production by pDCs similar to those of RMs or humans. These data establish that IFN-α and IRF7 signaling in SMs are largely intact, with differences with RMs that are minor and unlikely to play any role in the AIDS resistance of SIV-infected SMs.

Collaboration


Dive into the Thomas H. Vanderford's collaboration.

Top Co-Authors

Avatar

Guido Silvestri

Yerkes National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Mirko Paiardini

Yerkes National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benton Lawson

Yerkes National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Steven E. Bosinger

Yerkes National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Diane G. Carnathan

Yerkes National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald G. Collman

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge