Guido Vanermen
Flemish Institute for Technological Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guido Vanermen.
Food and Chemical Toxicology | 2012
Tine Fierens; Kelly Servaes; M. Van Holderbeke; Lieve Geerts; S. De Henauw; Isabelle Sioen; Guido Vanermen
Phthalates are organic lipophilic compounds that are principally used as plasticiser to increase the flexibility of plastic polymers. Other applications are a.o. the use of phthalates in printing inks and lacquers. Human exposure to phthalates mainly occurs via food ingestion and can induce adverse health effects. In this study, the presence of eight phthalate compounds--dimethyl phthalate (DMP), diethyl phthalate (DEP), diisobutyl phthalate (DiBP), di-n-butyl phthalate (DnBP), benzylbutyl phthalate (BBP), di(2-ethylhexyl) phthalate (DEHP), dicyclohexyl phthalate (DCHP) and di-n-octyl phthalate (DnOP)--was investigated in 400 food products, divided over eleven groups, and packages sold on the Belgian market. For this purpose, suitable extraction techniques were developed and validated for four different matrices, namely high-fat foods, low-fat food products, aqueous-based beverages and packaging materials. The instrumental analysis was performed by means of gas chromatography-low resolution-mass spectrometry with electron impact ionisation (GC-EI-MS). A wide variety of phthalate concentrations was observed in the different groups. DEHP was found in the highest concentration in almost every group. Moreover, DEHP was the most abundant phthalate compound, followed by DiBP, DnBP and BBP. This survey is part of the PHTAL project, which is the first project that discusses phthalate contamination on the Belgian food market.
Analytical and Bioanalytical Chemistry | 2014
Andreia Alves; Agnieszka Kucharska; Claudio Erratico; Fuchao Xu; Elly Den Hond; Gudrun Koppen; Guido Vanermen; Adrian Covaci; Stefan Voorspoels
AbstractHuman biomonitoring (HBM) is a scientific technique that allows us to assess whether and to what extent environmental pollutants enter humans. We review here the current HBM efforts for organophosphate esters, emerging flame retardants, perfluoroalkyl substances, and phthalate esters. Use of some of these chemicals has already been banned or restricted; they are regularly detected in the environment, wildlife, and human matrices. Traditionally, blood and urine collection have been widely used as sampling methods. New non-invasive approaches (e.g., saliva, hair, nails) are emerging as valid alternatives since they offer advantages with respect to sampling, handling, and ethical aspects, while ensuring similar reliability and sensitivity. Nevertheless, the identification of biomarkers of exposure is often difficult because chemicals may be metabolized in the human body. For many of the above-mentioned compounds, the mechanisms of the favorable metabolization pathways have not been unraveled, but research on important metabolites that could be used as biomarkers of exposure is growing. This review summarizes the state of the art regarding human exposure to, (non-invasive) HBM of, and metabolism of major organophosphate esters, emerging flame retardants, perfluoroalkyl substances, and phthalate esters currently detected in the environment. FigureHuman biomonitoring of emerging contaminants-non-invasive versus invasive matrices
Environmental Science & Technology | 2009
Debin Mao; Richard Lookman; Hendrik Van De Weghe; Reinhilde Weltens; Guido Vanermen; Nicole De Brucker; Ludo Diels
HPLC-GCXGC/FID (high-performance liquid chromatography followed by comprehensive two-dimensional gas chromatography with flame-ionization detection) and GCXGC/ToF-MS (comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry) were used to study the biodegradation of petroleum hydrocarbons in soil microcosms during 20 weeks. Two soils were studied: one spiked with fresh diesel and one field sample containing weathered diesel-like oil. Nutrient amended and unamended samples were included. Total petroleum hydrocarbon (TPH) levels in spiked soil decreased from 15,000 to 7,500 mg/kg d.m. and from 12,0O0 to 4,000 mg/kg d.m. in the field soil. Linear alkanes and aromatic hydrocarbons were better biodegradable (>60% degraded) than iso-alkanes; cycloalkanes were least degradable (<40%). Aromatic hydrocarbons up to three rings showed better degradability than n-alkanes. GCXGC/ToF-MS analysis of leaching water showed that initially various oxygenated hydrocarbons were produced. Compound peaks seemed to move up and rightward in the GCXGC chromatograms, indicating that more polar and heavier compounds were formed as biodegradation proceeded. Nutrient amendment can increase TPH removal rates, but had adverse effects on ecotoxicity and leaching potential in our experiment This was explained by observed shifts in the soil microbial community. Ecotoxicity assays showed that residual TPH still inhibited cress (Lepidium sativum) seed germination, but the leaching water was no longer toxic toward luminescent bacteria (Vibrio fischeri).
Science of The Total Environment | 2015
Agnieszka Kucharska; Adrian Covaci; Guido Vanermen; Stefan Voorspoels
In this study, we investigated the hypothesis whether externally adsorbed and internally deposited flame retardants (FRs) in hair could be distinguished. To this extent, hair samples collected from one volunteer were exposed under controlled conditions to phosphate FR (PFR) and polybrominated diphenyl ether (PBDE) standards to mimic external contamination. Afterwards, suitable washing procedures to selectively remove contaminants from the hair surface were investigated. The samples were measured by GC-(ECNI)-MS for PBDEs and LC-(ESI+)-MS/MS for PFRs. All investigated compounds were transferred onto the hair surface. One of the most important finding was that dust particles are not mandatory to transfer compounds on the hair surface and to be able to measure high levels of compounds in human hair. To assess different protocols to selectively remove external contamination, the exposed hair samples were washed in different media before analysis: water, methanol, hexane:dichloromethane (1:1, v/v), acetone and shampoo. Results indicated that there is no washing medium able to entirely and exclusively remove external contamination. Among investigated media, methanol removed a meaningful part of the external contamination (42-105%), but the removal efficiencies differed among compounds. We therefore concluded that hair should not be washed prior to analysis and in case of visible contamination (e.g. with cosmetic products), water would be the recommended agent. Organic solvents should not be used for the washing step. Although it is impossible to distinguish external from internal exposure, hair samples may be used as valuable biomarker of human exposure, providing a measure of integral exposure. To the best of our knowledge, this is the first study which has used externally exposed hair samples to PBDEs and PFRs.
Environmental Research | 2014
Tinne Geens; Liesbeth Bruckers; Adrian Covaci; Greet Schoeters; Tine Fierens; Isabelle Sioen; Guido Vanermen; Willy Baeyens; Bert Morrens; Ilse Loots; Vera Nelen; Benoit Nemery de Bellevaux; Nicolas Van Larebeke; Elly Den Hond
As part of the second Flemish Environment and Health Study (FLEHS II), bisphenol-A (BPA) and different phthalate metabolites were analyzed, for the first time, in the urine of 210 adolescents in Flanders, Belgium. All chemicals had a detection frequency above 90%. For all compounds, except the sum of DEHP, highest levels were detected during spring. Average values for the Flemish adolescents were in an agreement with concentrations found in different international studies, all confirming the ubiquity of BPA and phthalate exposure. There was a significant correlation between BPA and the different phthalate metabolites (r between 0.26 and 0.39; p<0.01). Shared sources of exposure to BPA and phthalates, such as food packaging, were suggested to be responsible for this positive correlation. Different determinants of exposure were evaluated in relation to the urinary concentrations of these chemicals. For BPA, a significant association was observed with household income class, smoking and exposure to environmental tobacco smoke. For phthalates, the following significant associations were observed: age (MBzP), educational level of the adolescent (MBzP), equivalent household income (MnBP), use of personal care products (MnBP and MBzP), wall paper in house (MnBP and MBzP) and use of local vegetables (MnBP and MBzP).
Journal of Chromatography A | 2013
K. Servaes; Stefan Voorspoels; J. Lievens; Bart Noten; K. Allaerts; H. Van De Weghe; Guido Vanermen
Phthalates, which are ubiquitous in the environment, are readily metabolized in human bodies to their respective monoesters. These phthalate monoesters are non-persistent with short half-lives, which make them the ideal biomarkers of human exposure to phthalates. In this study a direct analysis method without preconcentration was developed and validated for the following phthalate ester metabolites in urine: mono-(2-ethylhexyl) phthalate, mono-(2-ethyl-5-hydroxyhexyl) phthalate, mono-(2-ethyl-5-oxohexyl)phthalate, monobenzyl phthalate, mono-isobutylphthalate, mono-n-butyl phthalate and monoethyl phthalate. The recovery of the phthalate ester metabolites varied between 97% and 104%. The intraday precision for the replicate analysis (n=10) of a urine sample did not exceed 5% for most of the compounds. The coefficient of variance amounted to 2-3%. The limit of quantification was set equal to 0.5μg/L for the majority of the compounds. A comparison between the direct analysis method and a foregoing solid phase extraction (SPE) of the urine sample was made. Finally, the applicability of the direct analysis method was tested in three interlaboratory comparisons.
Journal of Chromatography A | 2009
Debin Mao; Richard Lookman; Hendrik Van De Weghe; Dirk Van Look; Guido Vanermen; Nicole De Brucker; L. Diels
Enhanced bioremediation of petroleum hydrocarbons in two biopiles was quantified by high-performance liquid chromatography (HPLC) followed by comprehensive two-dimensional gas chromatography (GCXGC). The attenuation of 34 defined hydrocarbon classes was calculated by HPLC-GCXGC analysis of representative biopile samples at start-up and after 18 weeks of biopile operation. In general, a-cyclic alkanes were most efficiently removed from the biopiles, followed by monoaromatic hydrocarbons. Cycloalkanes and polycyclic aromatic hydrocarbons (PAHs) were more resistant to degradation. A-cyclic biomarkers farnesane, trimethyl-C13, norpristane, pristane and phytane dropped to only about 10% of their initial concentrations. On the other hand, C29-C31 hopane concentrations remained almost unaltered after 18 weeks of biopile operation, confirming their resistance to biodegradation. They are thus reliable indicators to estimate attenuation potential of petroleum hydrocarbons in biopile processed soils.
Aquatic Toxicology | 2015
Sabine Navis; Aline Waterkeyn; Adinda Putman; Luc De Meester; Guido Vanermen; Luc Brendonck
Although Daphnia magna is a key species in many lentic freshwater ecosystems and is commonly used as model organism in ecology and ecotoxicology, very little is known about the effects of chemicals on their dormant life stages. Dormant eggs (ephippia) are produced when environmental conditions deteriorate, and Daphnia switch from clonal to sexual reproduction. Ephippia produced over different growing seasons can accumulate in the sediment of ponds and lakes, where they can be exposed to pesticides and other (anthropogenic) stressors. In the present study, we have investigated the effects of pesticide exposure on dormant eggs at different embryonic developmental stages and evaluated the degree of protection against pollution provided by the ephippial case. We therefore conducted a hatching experiment in which decapsulated and encapsulated dormant eggs were exposed to an insect growth regulator (fenoxycarb) at different stages during their development, both before and after activation of the eggs. In addition, we developed an analytical method to measure fenoxycarb concentrations in the dormant eggs. Fenoxycarb negatively affected development and hatching success and changed the timing of hatching in activated and in dormant eggs. Hatching characteristics as well as fenoxycarb concentrations inside the eggs differed significantly between exposure treatments. Final stages of embryonic development were most sensitive to pesticide exposure and had the highest tissue concentrations of fenoxycarb. Tissue concentrations did not differ significantly between decapsulated and encapsulated eggs, suggesting that the ephippial case offers limited or no direct protection against pesticide exposure. With this study we provide new evidence showing that pesticides can bioconcentrate in and affect D. magna dormant eggs. The severity of the effects on developing embryos depends on the timing of pesticide exposure. Our results stress the importance of considering the full life-cycle of model organisms used in ecotoxicological studies, since these are ultimately aimed at assessing risks of chemical exposure on natural aquatic ecosystems.
Environmental Research | 2014
Mirja Van Holderbeke; Lieve Geerts; Guido Vanermen; Kelly Servaes; Isabelle Sioen; Stefaan De Henauw; Tine Fierens
As numerous studies have indicated that food ingestion is the most important exposure pathway to several phthalates, this study aimed to determine possible contamination pathways of phthalates in food products sold on the Belgian market. To do this, concentrations of eight phthalates (dimethyl phthalate (DMP), diethyl phthalate (DEP), diisobutyl phthalate (DiBP), di-n-butyl phthalate (DnBP), benzylbutyl phthalate (BBP), dicyclohexyl phthalate (DCHP), di(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP)) were determined in 591 foods and 30 packaging materials. In general, the four most prominent phthalates in Belgian food products were DEHP, DiBP, DnBP and BBP. Special attention was given to the origin of these phthalates in bread, since high phthalate concentrations (especially DEHP) were determined in this frequently consumed food product. Phthalates seemed to occur in Belgian bread samples due to the use of contaminated ingredients (i.e. use of contaminated flour) as well as due to migration from phthalate containing contact materials used during production (e.g. coated baking trays). Also the results of the conducted concentration profiles of apple, bread, salami and two cheese types revealed the important role of processing - and not packaging - on phthalate contents in foods.
Journal of Chromatography A | 2009
Debin Mao; Richard Lookman; Hendrik Van De Weghe; Guido Vanermen; Nicole De Brucker; L. Diels
An assessment of aqueous solubility (leaching potential) of soil contaminations with petroleum hydrocarbons (TPH) is important in the context of the evaluation of (migration) risks and soil/groundwater remediation. Field measurements using monitoring wells often overestimate real TPH concentrations in case of presence of pure oil in the screened interval of the well. This paper presents a method to calculate TPH equilibrium concentrations in groundwater using soil analysis by high-performance liquid chromatography followed by comprehensive two-dimensional gas chromatography (HPLC-GCXGC). The oil in the soil sample is divided into 79 defined hydrocarbon fractions on two GCXGC color plots. To each of these fractions a representative water solubility is assigned. Overall equilibrium water solubility of the non-aqueous phase liquid (NAPL) present in the sample and the water phases chemical composition (in terms of the 79 fractions defined) are then calculated using Raoults law. The calculation method was validated using soil spiked with 13 different TPH mixtures and 1 field-contaminated soil. Measured water solubilities using a column recirculation equilibration experiment agreed well to calculated equilibrium concentrations and water phase TPH composition.